分析 分类讨论a的范围,把y≤0转化为$lo{g}_{a}x,{x}^{2}+bx-4$的符号的判断问题即可求解.
解答 解:设g(x)=x2+bx-4,
①若0<a<1,当0<x<1时,易知logax>0,故问题可转化为g(x)≤0在(0,1)上恒成立,
则有g(0)≤0,g(1)=b-3≤0,解得:b≤3;
当x≥1时,logax≤0,此时不等式可转化为g(x)≥0在[1,+∞)上恒成立,
∴g(1)=b-3≥0,即b≥3,
∴b=3,
∵0<a<1,
∴1<ba<3,
②若a>1,
当0<x<1时,logax<0,故g(x)≥0恒成立,
但g(0)=-4<0,故不成立;
由此可知当a>1时,不等式不可能恒成立.
综上可知ba∈(1,3).
故答案为:(1,3).
点评 本题考查了不等式恒成立问题以及分类讨论的思想方法.通过分类讨论把问题转化为二次不等式问题是解题关键.属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com