分析 由条件MF1⊥MF2,sin∠MF2F1=$\frac{1}{3}$,列出关系式,从而可求离心率.
解答 解:由题意,M为双曲线左支上的点,则MF1=$\frac{{b}^{2}}{a}$,MF2=$\sqrt{4{c}^{2}+(\frac{{b}^{2}}{a})^{2}}$,
∴sin∠MF2F1=$\frac{1}{3}$,∴$\frac{\frac{{b}^{2}}{a}}{\sqrt{4{c}^{2}+\frac{{b}^{4}}{{a}^{2}}}}$=$\frac{1}{3}$,可得:2b4=a2c2,即$\sqrt{2}$b2=ac,又c2=a2+b2,
可得$\sqrt{2}$e2-e-$\sqrt{2}=0$,e>1,解得e=$\sqrt{2}$.
故答案为:$\sqrt{2}$.
点评 本题主要考查双曲线的定义及离心率的求解,关键是找出几何量之间的关系.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com