精英家教网 > 高中数学 > 题目详情
9.已知等比数列{an}中,公比q是整数,a1+a4=18,a2+a3=12,则此数列的前8项和为510.

分析 由等比数列{an}通项公式列出方程组,求出q=2,a1=2,由此能求出此数列的前8项和.

解答 解:∵等比数列{an}中,公比q是整数,a1+a4=18,a2+a3=12,
∴$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}{q}^{3}=18}\\{{{a}_{1}q+{a}_{1}q}^{2}=12}\end{array}\right.$,解得q=2,a1=2,或q=$\frac{1}{2}$,a1=16(舍),
∴q=2,a1=2,
此数列的前8项和${S}_{8}=\frac{2(1-{2}^{8})}{1-2}$=510.
故答案为:510.

点评 本题考查等比数列的前8项和的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,已知底面ABCD是菱形且∠BAD=60°,侧棱PA=PD,O为AD边的中点,M为线段PC上的定点.
(1)求证:平面PAD⊥平面POB;
(2)若AB=2$\sqrt{3}$,PA=$\sqrt{7}$,PB=$\sqrt{13}$,且直线PA∥平面MOB,求三棱锥P-MOB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设$\sqrt{3}$b是1-a和1+a的等比中项(a>0,b>0),则a+$\sqrt{3}$b的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex,g(x)=ln(x+a).
( I)若已知函数f(x)的图象与g(x)图象有一条通过坐标原点的公切线,求a的值;
( II)当a≤2时,证明:f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{-lo{g}_{2}x,x>1}\\{2+{4}^{x},x≤1}\end{array}\right.$,则f(f($\frac{1}{2}$))=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在等差数列{an}中,
(1)已知a4=10,a10=-2,且Sn=60,求n.
(2)已知a1=-7,an+1=an+2,求S17
(3)若a2+a7+a12=24,求S13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一个算法如下:
第一步,计算m=$\frac{4ac-{b}^{2}}{4a}$.
第二步,若a>0,输出最小值m.
第三步,若a<0,输出最大值m.
已知a=1,b=2,c=3,则运行以上步骤输出的结果为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=$\sqrt{3}$,点E为棱AB上的动点,则D1E+CE的最小值为(  )
A.$2\sqrt{2}$B.$\sqrt{10}$C.$2+\sqrt{2}$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=$\frac{sinx}{|sinx|}$+$\frac{cosx}{|cosx|}$的值域是{-2,0,2}.

查看答案和解析>>

同步练习册答案