分析 (1)通过证明AD⊥平面POB得出平面PAD⊥平面POB;
(2)连接AC交OB与N,连接BD交AC于E,连接MN,则PA∥MN,计算OP得出M到平面ABCD的距离d,则VP-MOB=VA-MOB=$\frac{1}{3}$S△AOB•d.
解答
证明:(1)∵PA=PD,O是AD的中点,
∴PO⊥AD,
∵底面ABCD是菱形,∠BAD=60°,
∴OB⊥AD,
又PO?平面PAD,AD?平面PAD,
∴OB⊥平面PAD,
又OB?平面POB,
∴平面PAD⊥平面POB.
(2)∵△PAD是等腰三角形,AD=AB=2$\sqrt{3}$,PA=$\sqrt{7}$,
∴AO=$\frac{1}{2}AD=\sqrt{3}$,∴OP=$\sqrt{P{A}^{2}-A{O}^{2}}$=2,
连接AC交OB与N,连接BD交AC于E,连接MN,
∵PA∥平面OMB,PA?平面PAC,平面PAC∩平面OMB=MN,
∴PA∥MN,
∴$\frac{PM}{PC}=\frac{AN}{AC}$,
∵四边形ABCD是菱形,∠BAD=60°,
∴AN=$\frac{2}{3}$AE,AC=2AE,
∴$\frac{PM}{PC}=\frac{AN}{AC}$=$\frac{1}{3}$,
∴M到平面ABCD的距离d=$\frac{2}{3}$PO=$\frac{4}{3}$.
∴VP-MOB=VA-MOB=$\frac{1}{3}$S△AOB•d=$\frac{1}{3}×\frac{1}{2}×2\sqrt{3}×\sqrt{3}×\frac{\sqrt{3}}{2}×\frac{4}{3}$=$\frac{2\sqrt{3}}{3}$.
点评 本题考查了面面垂直的判定定理,线面平行的性质,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 90°<A<180° | B. | 45°<A<90° | C. | 60°<A<90° | D. | 0°<A<90° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | α=-β | B. | α=180°+β | ||
| C. | α=k•360°+β,k∈Z | D. | α=k•360°±180°+β,k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com