精英家教网 > 高中数学 > 题目详情
10.数列{an}满足:an-2an-1=0(n≥2),a1=1,则a2与a4的等差中项是(  )
A.-5B.-10C.5D.10

分析 利用等比数列与等差数列的通项公式及其性质即可得出.

解答 解:数列{an}满足:an-2an-1=0(n≥2),a1=1,即an=2an-1
∴数列{an}是等比数列,公比为2.
∴an=1×2n-1=2n-1
则a2与a4的等差中项=$\frac{{a}_{2}+{a}_{4}}{2}$=$\frac{2+{2}^{3}}{2}$=5,
故选:C.

点评 本题考查了等比数列与等差数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.如图,勘探队员朝一座山行进,在前后两处A,B观察塔尖P及山顶Q.已知P,Q,A,B,O在同一平面且与水平面垂直.设塔高PQ=h,山高QO=H,AB=m,BO=n,仰角∠PAO=α,仰角∠QAO=β,仰角∠PBO=θ.试用m,α,β,θ表示h,h=$\frac{msinα}{sin(θ-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知角α的终边经过点(3a,-4a)(a<0),则sinα-cosα等于(  )
A.-$\frac{1}{5}$B.-$\frac{7}{5}$C.$\frac{1}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知M={x|-2≤x≤5},N={x|a+1≤x≤2a-1},
(1)若a=$\frac{7}{2}$,求M∪N; (∁RM)∩N;
(2)若M?N,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某小区的绿化地,有一个三角形的花圃区,若该三角形的三个顶点分别用A,B,C表示,其对边分别为a,b,c且满足(2b-c)cosA-acosC=0,则在A处望B、C所成的角的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{2}$x2-alnx(a>0).
(Ⅰ) 若a=1,求f(x)单调区间和极值;
(Ⅱ) 若f(x)在区间(1,e)上恰有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,已知底面ABCD是菱形且∠BAD=60°,侧棱PA=PD,O为AD边的中点,M为线段PC上的定点.
(1)求证:平面PAD⊥平面POB;
(2)若AB=2$\sqrt{3}$,PA=$\sqrt{7}$,PB=$\sqrt{13}$,且直线PA∥平面MOB,求三棱锥P-MOB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.抛物线y2=4x的焦点到双曲线$\frac{x^2}{2}-\frac{y^2}{8}=1$的渐近线的距离为(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{{4\sqrt{5}}}{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex,g(x)=ln(x+a).
( I)若已知函数f(x)的图象与g(x)图象有一条通过坐标原点的公切线,求a的值;
( II)当a≤2时,证明:f(x)>g(x).

查看答案和解析>>

同步练习册答案