分析 (1)推导出A1O⊥BD,CO⊥BD,由此能证明BD⊥平面A1CO.
(2)以OA,OB,OA1分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线A1C与平面AA1D1D所成角的正弦值.
解答 证明:(1)∵A1O⊥底面ABCD,BD?平面ABCD,![]()
∴A1O⊥BD.
∵ABCD是菱形,∴CO⊥BD.
又A1O∩CO=O,∴BD⊥平面A1CO.
解:(2)由(1)知OA,OB,OA1两两垂直,
则以OA,OB,OA1分别为x,y,z轴,建立如图所示的空间直角坐标系.
∵∠BAD=60°,AB=AA1=2,∴OB=OD=1,AO=$\sqrt{3}$,OA1=1,
则A($\sqrt{3},0,0$),D(0,-1,0),C(-$\sqrt{3}$,0,0),A1(0,0,1),
$\overrightarrow{AD}$=(-$\sqrt{3}$,-1,0),$\overrightarrow{A{A}_{1}}$=(-$\sqrt{3},0,1$),$\overrightarrow{{A}_{1}C}$=(-$\sqrt{3},0,-1$),
设平面AA1D1D的一个法向量为$\overrightarrow{n}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AD}=-\sqrt{3}x-y=0}\\{\overrightarrow{n}•\overrightarrow{A{A}_{1}}=-\sqrt{3}x+z=0}\end{array}\right.$,得y=-z=-$\sqrt{3}$x,
令x=1,得y=-$\sqrt{3}$,z=$\sqrt{3}$,∴$\overrightarrow{n}$=(1,-$\sqrt{3},\sqrt{3}$),
∵cos<$\overrightarrow{n},\overrightarrow{{A}_{1}C}$>=$\frac{\overrightarrow{n}•\overrightarrow{{A}_{1}C}}{|\overrightarrow{n}|•|\overrightarrow{{A}_{1}C}|}$=$\frac{-2\sqrt{3}}{2×\sqrt{7}}$=-$\frac{\sqrt{21}}{7}$,
∴直线A1C与平面AA1D1D所成角的正弦值$\frac{\sqrt{21}}{7}$.
点评 本题考查线面垂直的证明,考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x<0或1<x<2} | B. | {x|-2<x<-1或x>0} | C. | {x|x<-2或-1<x<0} | D. | {x|0<x<1或x>2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{5}$ | B. | -$\frac{7}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{7}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com