精英家教网 > 高中数学 > 题目详情
3.已知向量$\overrightarrow{a}$=(x,$\sqrt{3}$),$\overrightarrow{b}$=(3,-$\sqrt{3}$),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|${\overrightarrow a}$|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 利用向量的垂直的充要条件列出方程求解x,然后求解向量的模.

解答 解:向量$\overrightarrow{a}$=(x,$\sqrt{3}$),$\overrightarrow{b}$=(3,-$\sqrt{3}$),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,
可得:3x=-3,解得x=-1.
则|${\overrightarrow a}$|=$\sqrt{(-1)^{2}+(\sqrt{3})^{2}}$=2.
故选:D.

点评 本题考查向量的数量积的应用,向量的模的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.不等式x(1-2x)>0的解集为{x|0$<x<\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an},{bn}都是等差数列,Sn,Tn分别是它们的前n项和,且$\frac{S_n}{T_n}=\frac{7n+1}{n+3}$,则$\frac{{{a_3}+{a_5}+{a_{17}}+{a_{21}}}}{{{b_6}+{b_8}+{b_{14}}+{b_{18}}}}$的值为(  )
A.$\frac{39}{7}$B.$\frac{17}{3}$C.$\frac{71}{13}$D.$\frac{31}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.
(1)求应从小学、中学、大学中分别抽取的学校数目;
(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,求抽取的2所学校均为小学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知tan(α+β)=$\frac{2}{5}$,tan(β-$\frac{π}{4}$)=$\frac{1}{4}$,求$\frac{cosα+sinα}{cosα-sinα}$的值;
(2)已知β,β均为锐角,且cos(α+β)=$\frac{\sqrt{5}}{5}$,sin(α-β)=$\frac{\sqrt{10}}{10}$,求β.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x≥-1},则正确的是(  )
A.0⊆AB.{0}∈AC.∅∈AD.{0}⊆A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x),g(x)的定义域均为R,且f(x)是奇函数,g(x)是偶函数,f(x)+g(x)=ex,其中e为自然对数的底数.
(Ⅰ)求f(x),g(x)的解析式,并证明:当x>0时,f(x)>0,g(x)>1
(Ⅱ)若关于x的不等式2mf(x)≤2g(x)-ex-m-1在(0,+∞)上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在不等边△ABC中,a2<b2+c2,则A的取值范围是(  )
A.90°<A<180°B.45°<A<90°C.60°<A<90°D.0°<A<90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱柱ABCD-A1B1C1D1的底面AB是CD菱形,AC∩BD=O,A1O⊥底面ABCD,AB=AA1=2.
(1)证明:BD⊥平面A1CO;
(2)若∠BAD=60°,求直线A1C与平面AA1D1D所成角的正弦值.

查看答案和解析>>

同步练习册答案