分析 先求出f($\frac{1}{2}$)=2+4${\;}^{\frac{1}{2}}$=4,从而f(f($\frac{1}{2}$))=f(4),由此能求出结果.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{-lo{g}_{2}x,x>1}\\{2+{4}^{x},x≤1}\end{array}\right.$,
∴f($\frac{1}{2}$)=2+4${\;}^{\frac{1}{2}}$=4,
f(f($\frac{1}{2}$))=f(4)=-log24=-2.
故答案为:-2.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | α=-β | B. | α=180°+β | ||
| C. | α=k•360°+β,k∈Z | D. | α=k•360°±180°+β,k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 10 | C. | 9 或 10 | D. | 10 或 11 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com