精英家教网 > 高中数学 > 题目详情
12.已知$\frac{1}{m}$+$\frac{9}{n}$=1且m,n均为正数,当m+n取得最小值时,m•n值为48.

分析 找出m+n的取等条件,进而求m,n的值,问题得以解决

解答 解:(m+n)($\frac{1}{m}$+$\frac{9}{n}$)=1+9+$\frac{9m}{n}$+$\frac{n}{m}$≥10+2$\sqrt{\frac{9m}{n}•\frac{n}{m}}$=16,当且仅当n=3m时取等号,即m=4,n=12时等号,
∴m•n=48,
故答案为:48

点评 本题考查了“乘1法”与基本不等式的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.某小区的绿化地,有一个三角形的花圃区,若该三角形的三个顶点分别用A,B,C表示,其对边分别为a,b,c且满足(2b-c)cosA-acosC=0,则在A处望B、C所成的角的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,已知A,B,C分别为边a,b,c所对的角,已知$\overrightarrow{CA}•\overrightarrow{CB}=2$,a+b=ab,其面积$S=\sqrt{3}$,则边c=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设$\sqrt{3}$b是1-a和1+a的等比中项(a>0,b>0),则a+$\sqrt{3}$b的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$sinxcosx+cos2x+$\frac{3}{2}$.
(1)当x∈[-$\frac{π}{6}$,$\frac{π}{3}}$]时,求函数y=f(x)的值域;
(2)已知ω>0,函数g(x)=f(${\frac{ωx}{2}$+$\frac{π}{12}}$),若函数g(x)在区间[-$\frac{2π}{3}$,$\frac{π}{6}}$]上是增函数,求ω的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex,g(x)=ln(x+a).
( I)若已知函数f(x)的图象与g(x)图象有一条通过坐标原点的公切线,求a的值;
( II)当a≤2时,证明:f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{-lo{g}_{2}x,x>1}\\{2+{4}^{x},x≤1}\end{array}\right.$,则f(f($\frac{1}{2}$))=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一个算法如下:
第一步,计算m=$\frac{4ac-{b}^{2}}{4a}$.
第二步,若a>0,输出最小值m.
第三步,若a<0,输出最大值m.
已知a=1,b=2,c=3,则运行以上步骤输出的结果为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知四棱锥P-ABCD的顶点都在球O的球面上,底面ABCD是边长为2的正方形,且侧棱长都相等,若四棱稚的体积为$\frac{16}{3}$,则该球的表面积为(  )
A.$\frac{32π}{3}$B.$\frac{81π}{4}$C.D.$\frac{243π}{16}$

查看答案和解析>>

同步练习册答案