精英家教网 > 高中数学 > 题目详情
双曲线
x2
n
-y2=1
,(n>1)的两焦点为F1、F2,P在双曲线上,且满足|PF1|+|PF2|=2
n+2
,则△PF1F2的面积为(  )
A.
1
2
B.1C.2D.4
不妨设F1、F2是双曲线的左右焦点,
P为右支上一点,
|PF1|-|PF2|=2
n

|PF1|+|PF2|=2
n+2
②,
由①②解得:
|PF1|=
n+2
+
n
,|PF2|=
n+2
-
n

得:|PF1|2+|PF2|2=4n+4=|F1F2|2
∴PF1⊥PF2
又由①②分别平方后作差得:
|PF1||PF2|=2,
故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线C: 的焦点为F,ABQ的三个顶点都在抛物线C上,点M为AB的中点,.(1)若M,求抛物线C方程;(2)若的常数,试求线段长的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)与抛物线y2=12x有一个公共焦点F,过点F且垂直于实轴的弦长为
2
2
,则双曲线的离心率等于(  )
A.
3
2
4
B.
2
2
C.
4
3
3
D.
3
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线方程为
x2
a2
-
y2
b2
=1(a>0,b>0)
,右焦点为F,点A(0,b),线段AF交双曲线于点B,且
AB
=2
BF
,则双曲线的离心率为(  )
A.
10
2
B.
10
C.
5
2
D.
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知实数m是2,6的等差中项,则双曲线x2-
y2
m
=1
的离心率为(  )
A.
2
B.
3
C.
5
2
D.
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线x2-
y2
16
=1
上一点P到它的一个焦点的距离等于4,那么点P到另一个焦点的距离等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P是双曲线
x2
36
-
y2
64
=1
的右支上一点,M.N分别是圆(x+10)2+y2=4和(x-10)2+y2=1上的点,则|PM|-|PN|的最大值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点为,则的值为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,点到点的距离比它到轴的距离多1,记点的轨迹为.
(1)求轨迹为的方程;
(2)设斜率为的直线过定点,求直线与轨迹恰好有一个公共点,两个公共点,三个公共点时的相应取值范围.

查看答案和解析>>

同步练习册答案