精英家教网 > 高中数学 > 题目详情
在直角坐标系中,直线l经过点P(3,0),倾斜角α=
π
4

(1)写出直线l的参数方程;
(2)以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρ=4cosθ与直线l相交于A、B两点,求AB中点坐标及点P到A、B两点距离之积.
考点:点的极坐标和直角坐标的互化,直线的参数方程
专题:直线与圆
分析:(1)由已知条件根据参数方程的意义即可写出;
(2)先将曲线C的极坐标方程化为普通方程,再把直线的参数方程代入曲线C的方程,根据参数的几何意义即可得出.
解答: 解:(1)由于直线l经过点P(3,0),倾斜角α=
π
4

故直线l的参数方程为
x=3+tcos
π
4
  
y= 0+tsin
π
4
,即
x=3+
2
2
t
y=
2
2
t
(t为参数)

(2)∵C:ρ=4cosθ,∴x2+y2=4x,
x=3+
2
2
t
y=
2
2
t
(t为参数)
代入x2+y2=4x
整理得t2+
2
t-3=0

∵△>0,∴t1+t2=-
2
,即
t1+t2
2
=-
2
2

代入
x=3+
2
2
t
y=
2
2
t
(t为参数)

得AB中点坐标为(
5
2
,-
1
2
)

故P到A、B两点距离之积为|t1•t2|=3.
点评:熟练掌握直线的参数方程、极坐标方程与普通方程的互化公式,正确理解参数的几何意义是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了参加某项环保活动,用分层抽样的方法从高中三个年级的学生中,抽取若干人组成环保志愿者小组,有关数据见下表:
年级 相关人数 抽取人数
高一 36 x
高二 72 y
高三 54 3
(Ⅰ)分别求出样本中高一、高二年级志愿者的人数x,y;
(Ⅱ)用Ai(i=1,2,…)表示样本中高一年级的志愿者,ai(i=1,2,…)表示样本中高二年级的志愿者,现从样本中高一、高二年级的所有志愿者中随机抽取2人.
(1)按照以上志愿者的表示方法,用列举法列出上述所有可能情况;
(2)求二人在同一年级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

奇函数f(x)在[-2,2]是增函数,且f(-2)=-1,若函数f(x)≤t2-2at-1对所有的x∈[-2,2],a∈[-1,1]都成立,求实数t的取值范围(  )
A、-1≤t≤1
B、-2≤t≤2
C、t≤-2或t≥2
D、t≤-2或t=0或t≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,a2tanB=b2tanA,则△ABC是__________(  )
A、等腰或直角三角形
B、等腰三角形
C、等腰直角三角形
D、直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
sin2x,cos2x)
b
=(cos2x,-cos2x)

(1)若x∈(
24
12
),
a
b
+
1
2
=-
3
5
,求cos4x;
(2)设△ABC的三边a,b,c满足b2=ac,且边b所对应的角为x,若关于x的方程
a
b
+
1
2
=m
有且仅有一个实数根,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{
i
j
k
}
是单位正交基底,
a
=-3
i
+4
j
-
k
a
-
b
=-8
i
+16
j
-3
k
,那么
a
b
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)表示自然数x的数字和(如:x=123,则f(x)=1+2+3=6,即f(123)=6),则方程x+f(x)+f[f(x)]=2013的解集为 (  )
A、{1979,1985,1991,1999}
B、{1979,1985,1987,2003}
C、{1979,1985,1991,2013}
D、{1979,1985,1991,2003}

查看答案和解析>>

科目:高中数学 来源: 题型:

圆心在直线x=2上的圆C与y轴交于A(0,-4),B(0,-2)两点;
(1)求圆C的方程;
(2)直线l:y=ax+1与圆C相交所得的弦长为2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个五次多项式f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8,用秦九韶算法求当x=3时多项式的值为
 

查看答案和解析>>

同步练习册答案