£¨2013•ºþ±±£©ÉènÊÇÕýÕûÊý£¬rΪÕýÓÐÀíÊý£®
£¨¢ñ£©Çóº¯Êýf£¨x£©=£¨1+x£©r+1-£¨r+1£©x-1£¨x£¾-1£©µÄ×îСֵ£»
£¨¢ò£©Ö¤Ã÷£º
nr+1-(n-1)r+1
r+1
£¼nr£¼
(n+1)r+1-nr+1
r+1
£»
£¨¢ó£©Éèx¡ÊR£¬¼Ç[x]Ϊ²»Ð¡ÓÚxµÄ×îСÕûÊý£¬ÀýÈç[2]=2£¬[¦Ð]=4£¬[-
3
2
]=-1
£®ÁîS=
381
+
382
+
383
+¡­+
3125
£¬Çó[S]
µÄÖµ£®
£¨²Î¿¼Êý¾Ý£º80
4
3
¡Ö344.7£¬81
4
3
¡Ö350.5£¬124
4
3
¡Ö618.3£¬126
4
3
¡Ö631.7)
£®
·ÖÎö£º£¨¢ñ£©ÏÈÇó³öº¯Êýf£¨x£©µÄµ¼º¯Êýf¡ä£¨x£©£¬Áîf'£¨x£©=0£¬½âµÃx=0£¬ÔÙÇó³öº¯ÊýµÄµ¥µ÷Çø¼ä£¬½ø¶øÇó³ö×îСֵΪf£¨0£©=0£»
£¨¢ò£©¸ù¾Ý£¨¢ñ£©Öª£¬¼´£¨1+x£©r+1¡Ý1+£¨r+1£©x£¬Áîx=
1
n
´úÈë²¢»¯¼òµÃnr£¼
(n+1)r+1-nr+1
r+1
£¬ÔÙÁîx=-
1
n
µÃ£¬nr£¾
nr+1-(n-1)r+1
r+1
£¬¼´½áÂ۵õ½Ö¤Ã÷£»
£¨¢ó£©¸ù¾Ý£¨¢ò£©µÄ½áÂÛ£¬Áîr=
1
3
£¬n·Ö±ðÈ¡Öµ81£¬82£¬83£¬¡­£¬125£¬·Ö±ðÁгö²»µÈʽ£¬ÔÙ½«¸÷ʽÏà¼ÓµÃ£¬
3
4
(125
4
3
-80
4
3
)£¼S£¼
3
4
(126
4
3
-81
4
3
)
£¬ÔÙÓɲο¼Êý¾ÝºÍÌõ¼þ½øÐÐÇó½â£®
½â´ð£º½â£»£¨¢ñ£©ÓÉÌâÒâµÃf'£¨x£©=£¨r+1£©£¨1+x£©r-£¨r+1£©=£¨r+1£©[£¨1+x£©r-1]£¬
Áîf'£¨x£©=0£¬½âµÃx=0£®
µ±-1£¼x£¼0ʱ£¬f'£¨x£©£¼0£¬¡àf£¨x£©ÔÚ£¨-1£¬0£©ÄÚÊǼõº¯Êý£»
µ±x£¾0ʱ£¬f'£¨x£©£¾0£¬¡àf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÄÚÊÇÔöº¯Êý£®
¹Êº¯Êýf£¨x£©ÔÚx=0´¦£¬È¡µÃ×îСֵΪf£¨0£©=0£®
£¨¢ò£©ÓÉ£¨¢ñ£©£¬µ±x¡Ê£¨-1£¬+¡Þ£©Ê±£¬ÓÐf£¨x£©¡Ýf£¨0£©=0£¬
¼´£¨1+x£©r+1¡Ý1+£¨r+1£©x£¬ÇҵȺŵ±ÇÒ½öµ±x=0ʱ³ÉÁ¢£¬
¹Êµ±x£¾-1ÇÒx¡Ù0£¬ÓУ¨1+x£©r+1£¾1+£¨r+1£©x£¬¢Ù
ÔÚ¢ÙÖУ¬Áîx=
1
n
£¨Õâʱx£¾-1ÇÒx¡Ù0£©£¬µÃ(1+
1
n
)r+1£¾1+
r+1
n
£®
ÉÏʽÁ½±ßͬ³Ënr+1£¬µÃ£¨n+1£©r+1£¾nr+1+nr£¨r+1£©£¬
¼´nr£¼
(n+1)r+1-nr+1
r+1
£¬¢Ú
µ±n£¾1ʱ£¬ÔÚ¢ÙÖÐÁîx=-
1
n
£¨Õâʱx£¾-1ÇÒx¡Ù0£©£¬
ÀàËƿɵÃnr£¾
nr+1-(n-1)r+1
r+1
£¬¢Û
ÇÒµ±n=1ʱ£¬¢ÛÒ²³ÉÁ¢£®
×ۺϢڣ¬¢ÛµÃ
nr+1-(n-1)r+1
r+1
£¼nr£¼
(n+1)r+1-nr+1
r+1
£¬¢Ü
£¨¢ó£©ÔÚ¢ÜÖУ¬Áîr=
1
3
£¬n·Ö±ðÈ¡Öµ81£¬82£¬83£¬¡­£¬125£¬
µÃ
3
4
(81
4
3
-80
4
3
)£¼
381
£¼
3
4
(82
4
3
-81
4
3
)
£¬
3
4
(82
4
3
-81
4
3
)£¼
382
£¼
3
4
(83
4
3
-82
4
3
)
£¬
3
4
(83
4
3
-82
4
3
)£¼
383
£¼
3
4
(84
4
3
-83
4
3
)
£¬¡­
3
4
(125
4
3
-124
4
3
)£¼
3125
£¼
3
4
(126
4
3
-125
4
3
)
£¬
½«ÒÔÉϸ÷ʽÏà¼Ó£¬²¢ÕûÀíµÃ
3
4
(125
4
3
-80
4
3
)£¼S£¼
3
4
(126
4
3
-81
4
3
)
£®
´úÈëÊý¾Ý¼ÆË㣬¿ÉµÃ
3
4
(125
4
3
-80
4
3
)¡Ö210.2£¬
3
4
(126
4
3
-81
4
3
)¡Ö210.9

ÓÉ[S]µÄ¶¨Ò壬µÃ[S]=211£®
µãÆÀ£º±¾Ì⿼²éÁËÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔºÍÇó×îÖµ£¬ÒÔ¼°Ñ§ÉúµÄ´´Ð¾«Éñ£¬ÊÇ·ñ»á¹Û²ì£¬»á³éÏó¸ÅÀ¨£¬»áÓÃÀà±ÈµÄ·½·¨µÃ³öÆäËü½áÂÛ£¬ÄѶȽϴó£¬×¢ÒâÀûÓÃÉÏÒ»ÎʵĽáÂÛ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ºþ±±£©Èçͼ£¬ABÊÇÔ²OµÄÖ±¾¶£¬µãCÊÇÔ²OÉÏÒìÓÚA£¬BµÄµã£¬Ö±ÏßPC¡ÍƽÃæABC£¬E£¬F·Ö±ðÊÇPA£¬PCµÄÖе㣮
£¨¢ñ£©¼ÇƽÃæBEFÓëƽÃæABCµÄ½»ÏßΪl£¬ÊÔÅжÏÖ±ÏßlÓëƽÃæPACµÄλÖùØϵ£¬²¢¼ÓÒÔÖ¤Ã÷£»
£¨¢ò£©É裨¢ñ£©ÖеÄÖ±ÏßlÓëÔ²OµÄÁíÒ»¸ö½»µãΪD£¬ÇÒµãQÂú×ã
DQ
=
1
2
CP
£®¼ÇÖ±ÏßPQÓëƽÃæABCËù³ÉµÄ½ÇΪ¦È£¬ÒìÃæÖ±ÏßPQÓëEFËù³ÉµÄ½ÇΪ¦Á£¬¶þÃæ½ÇE-l-CµÄ´óСΪ¦Â£®ÇóÖ¤£ºsin¦È=sin¦Ásin¦Â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ºþ±±£©Éèx£¬y£¬z¡ÊR£¬ÇÒÂú×㣺x2+y2+z2=1£¬x+2y+3z=
14
£¬Ôòx+y+z=
3
14
7
3
14
7
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ºþ±±£©iΪÐéÊýµ¥Î»£¬É踴Êýz1£¬z2ÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µÄµã¹ØÓÚÔ­µã¶Ô³Æ£¬Èôz1=2-3i£¬Ôòz2=
-2+3i
-2+3i
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ºþ±±£©Éèa£¾0£¬b£¾0£¬ÒÑÖªº¯Êýf£¨x£©=
ax+b
x+1
£®
£¨¢ñ£©µ±a¡Ùbʱ£¬ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ò£©µ±x£¾0ʱ£¬³Æf£¨x£©Îªa¡¢b¹ØÓÚxµÄ¼ÓȨƽ¾ùÊý£®
£¨i£©ÅжÏf£¨1£©£¬f£¨
b
a
£©£¬f£¨
b
a
£©ÊÇ·ñ³ÉµÈ±ÈÊýÁУ¬²¢Ö¤Ã÷f£¨
b
a
£©¡Üf£¨
b
a
£©£»
£¨ii£©a¡¢bµÄ¼¸ºÎƽ¾ùÊý¼ÇΪG£®³Æ
2ab
a+b
Ϊa¡¢bµÄµ÷ºÍƽ¾ùÊý£¬¼ÇΪH£®ÈôH¡Üf£¨x£©¡ÜG£¬ÇóxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸