精英家教网 > 高中数学 > 题目详情

已知函数
(1)讨论函数在定义域内的极值点的个数;
(2)若函数处取得极值,对,恒成立,求实数的取值范围.

(Ⅰ)当上没有极值点,当时,上有一个极值点.(Ⅱ)

解析试题分析:(Ⅰ)
时,上恒成立,函数 在单调递减,
上没有极值点;
时,
上递减,在上递增,即处有极小值.
∴当上没有极值点,
时,上有一个极值点.
(Ⅱ)∵函数处取得极值,∴,∴
,可得上递减,在上递增,
,即
考点:本题考查了导数的运用
点评:求可导函数的极值的基本步骤为:①求导函数;②求方程=0的根;③检查在方程根左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中为自然对数的底数.
(Ⅰ)当时,求曲线处的切线与坐标轴围成的三角形的面积;
(Ⅱ)若函数存在一个极大值和一个极小值,且极大值与极小值的积为,求
值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”.已知为自然对数的底数).
(1)求的极值;
(2)函数是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知时有极大值6,在时有极小值
的值;并求在区间[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)已知函数h(x)=g(x)+ax3的一个极值点为1,求a的取值;
(2) 求函数上的最小值;
(3)对一切恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(I)若曲线与曲线在它们的交点处具有公共切线,求的值;
(II)当时,若函数在区间内恰有两个零点,求的取值范围;
(III)当时,求函数在区间上的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求的单调区间;
(Ⅱ)设函数在点处的切线为,直线轴相交于点.若点的纵坐标恒小于1,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调递增区间;
(2)若不等式在区间(0,+上恒成立,求的取值范围;
(3)求证: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数.(
(1)若函数有三个零点,且,求函数 的单调区间;
(2)若,试问:导函数在区间(0,2)内是否有零点,并说明理由.
(3)在(Ⅱ)的条件下,若导函数的两个零点之间的距离不小于,求的取值范围.

查看答案和解析>>

同步练习册答案