【题目】已知函数
.
(1)若
,求曲线
在点
处的切线方程;
(2)若
对任意 在
恒成立,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,AD∥BC,AD⊥AB,PA=AD=2BC=2AB=2. ![]()
(1)求证:平面PAC⊥平面PCD;
(2)若E是PD的中点,求平面BCE将四棱锥P﹣ABCD分成的上下两部分体积V1、V2之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一块地皮
,其中
,
是直线段,曲线段
是抛物线的一部分,且点
是该抛物线的顶点,
所在的直线是该抛物线的对称轴.经测量,
km,
km,
.现要从这块地皮中划一个矩形
来建造草坪,其中点
在曲线段
上,点
,
在直线段
上,点
在直线段
上,设
km,矩形草坪
的面积为
km2.
![]()
(1)求
,并写出定义域;
(2)当
为多少时,矩形草坪
的面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,边长为2的正方形ABCD中, ![]()
(1)点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′.求证:A′D⊥EF
(2)当BE=BF=
BC时,求三棱锥A′﹣EFD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的点,且BE⊥B1C. ![]()
(1)求CE的长;
(2)求证:A1C⊥平面BED;
(3)求A1B与平面BDE夹角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数F(x)=
,其中f(x)=log2(x2+1),g(x)=log2(|x|+7).
(1)在实数集R上用分段函数形式写出函数F(x)的解析式;
(2)求函数F(x)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
=1(a>b>0)的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线x﹣y+
=0相切,过点P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求
的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a为正的常数,函数f(x)=|ax﹣x2|+lnx.
(1)若a=2,求函数f(x)的单调递增区间;
(2)设g(x)=
,求g(x)在区间[1,e]上的最小值.(e≈2.71828为自然对数的底数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com