【题目】已知函数.
(1)当为何值时, 轴为曲线的切线;
(2)用表示中的最小值,设函数,讨论零点的个数.
【答案】(1)当时, 轴是曲线的切线(2)当或时, 有一个零点;当或时, 有两个零点;当时, 有三个零点.
【解析】【试题分析】(1)先对函数求导,再运用导数的几何意义建立方程组求出;(2)先确定函数的解析表达式的情形,再运用分类整合思想分或和分类讨论函数的零点的个数问题,进而求出对应的参数的取值范围:
(1)设曲线与轴相切于点,则,即,
解得: ,
因此,当时, 轴是曲线的切线;
(2)当时, ,从而,
∴在无零点,
当时,若,则, ,故是的零点; 若,则, ,故不是的零点,当时, ,所以只需考虑在的零点个数,
(Ⅰ)若或,则在无零点,故在单调,而,
所以当时, 在有一个零点; 当时, 在无零点;
(Ⅱ)若,则在单调递减,在单调递增,
故当时, 取的最小值,最小值为.
若,即, 在无零点;
若,即,则在有唯一零点;
③若,即,由于,所以当时, 在有两个零点;当时, 在有一个零点.
综上,当或时, 有一个零点;当或时, 有两个零点;
当时, 有三个零点.
科目:高中数学 来源: 题型:
【题目】若一个四棱锥底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球表面积最小时,它的高为( )
A.3
B.2
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:(x﹣3)2+(y﹣4)2=4,直线l过定点A(1,0).
(1)若l与圆C相切,求l的方程;
(2)若l与圆C相交于P、Q两点,若|PQ|=2 ,求此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一直线l过直线l1:3x﹣y=3和直线l2:x﹣2y=2的交点P,且与直线l3:x﹣y+1=0垂直.
(1)求直线l的方程;
(2)若直线l与圆心在x正半轴上的半径为 的圆C相切,求圆C的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义函数序列: ,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn﹣1(x)),则函数y=f2017(x)的图像与曲线 的交点坐标为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知矩形ABCD中,AB=2,AD=1,M为CD的中点.如图将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求证:BM⊥平面ADM;
(2)若点E是线段DB上的中点,求三棱锥E﹣ABM的体积V1与四棱锥D﹣ABCM的体积V2之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】龙虎山花语世界位于龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖,玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自年春建成,试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.
某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在年月日赏花旺季对进园游客进行取样调查,从当日名游客中抽取人进行统计分析,结果如下:
年龄 | 频数 | 频率 | 男 | 女 |
① | ② | ③ | ④ | |
4 | ||||
合计 |
(I)完成表一中的空位①~④,并作答题纸中补全频率分布直方图,并估计年月日当日接待游客中岁以下的游戏的人数.
(II)完成表二,并判断能否有的把握认为在观花游客中“年龄达到岁以上”与“性别”相关;
(表二)
岁以上 | 岁以下 | 合计 | |
男生 | |||
女生 | |||
合计 |
(参考公式: ,其中)
(III)按分层抽样(分岁以上与岁以下两层)抽取被调查的位游客中的人作为幸运游客免费领取龙虎山内部景区门票,再从这人中选取人接受电视台采访,设这人中年龄在岁以上(含岁)的人数为,求的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}、{bn}满足:a1= ,an+bn=1,bn+1= .
(1)求a2 , a3;
(2)证数列{ }为等差数列,并求数列{an}和{bn}的通项公式;
(3)设Sn=a1a2+a2a3+a3a4+…+anan+1 , 求实数λ为何值时4λSn<bn恒成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com