精英家教网 > 高中数学 > 题目详情

【题目】已知矩形ABCD中,AB=2,AD=1,M为CD的中点.如图将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求证:BM⊥平面ADM;
(2)若点E是线段DB上的中点,求三棱锥E﹣ABM的体积V1与四棱锥D﹣ABCM的体积V2之比.

【答案】
(1)证明:因为矩形ABCD中,AB=2,AD=1,M为CD的中点,

所以 ,所以AM2+BM2=AB2,所以BM⊥AM.

因为平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,

又BM平面ABCM,且BM⊥AM,

∴BM⊥平面ADM.


(2)解:因为E为DB的中点,所以

又直角三角形ABM的面积

梯形ABCM的面积

所以 ,且

所以


【解析】(1)推导出BM⊥AM,BM⊥AM,由此能证明BM⊥平面ADM.(2)推导出 ,且 ,由此能求出三棱锥E﹣ABM的体积V1与四棱锥D﹣ABCM的体积V2之比.
【考点精析】根据题目的已知条件,利用直线与平面垂直的判定的相关知识可以得到问题的答案,需要掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知下列条件解三角形:
①A=60°,a= ,b=1;
②A=30°,a=1,b=2;
③A=30°,c=10,a=6;
④A=30°,c=10,a=5,
其中有唯一解的序号为( )
A.①②③
B.①②④
C.②③④
D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,DC∥AB,PA=1,AB=2,PD=BC=
(1)求证:平面PAD⊥平面PCD;
(2)试在棱PB上确定一点E,使截面AEC把该几何体分成的两部分PDCEA与EACB的体积比为2:1;
(3)在(2)的条件下,求二面角E﹣AC﹣P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当为何值时, 轴为曲线的切线;

(2)用表示中的最小值,设函数,讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中: (Ⅰ)求证:AC∥平面A1BC1
(Ⅱ)求证:平面A1BC1⊥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在实数集R上的函数,且y=f(x+1)是偶函数,当x≥1时,f(x)=2x﹣1,则f( ),f( ),f( )的大小关系是(
A.f( )<f( )<f(
B.f( )<f( )<f( )??
C.f( )<f( )<f(
D.f( )<f( )<f(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒中共有形状大小完全相同的5个球,其中有2个红球和3个白球.若从中随机取2个球,则概率为 的事件是(
A.都不是红球
B.恰有1个红球
C.至少有1个红球
D.至多有1个红球

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2ax+5(a>1).
(1)若f(x)的定义域和值域均是[1,a],求实数a的值;
(2)若对任意的x1 , x2∈[1,a+1],总有|f(x1)﹣f(x2)|≤4,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,ABD=CBD,AB=BD.

(1)证明:平面ACD平面ABC;

(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.

查看答案和解析>>

同步练习册答案