精英家教网 > 高中数学 > 题目详情
20.设x,y是正数,且x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则$\frac{{b}_{1}{b}_{2}}{({a}_{1}+{a}_{2})^{2}}$的最大值是$\frac{1}{4}$.

分析 x,y是正数,且x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,可得a1+a2=x+y,b1•b2=xy.可得$\frac{{b}_{1}{b}_{2}}{({a}_{1}+{a}_{2})^{2}}$=$\frac{xy}{(x+y)^{2}}$,再利用基本不等式的性质即可得出.

解答 解:∵x,y是正数,且x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,
∴a1+a2=x+y,b1•b2=xy.
则$\frac{{b}_{1}{b}_{2}}{({a}_{1}+{a}_{2})^{2}}$=$\frac{xy}{(x+y)^{2}}$$≤\frac{xy}{4xy}$=$\frac{1}{4}$,当且仅当x=y时取等号.
则$\frac{{b}_{1}{b}_{2}}{({a}_{1}+{a}_{2})^{2}}$的最大值是$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查了等差数列与等比数列的通项公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知圆C:(x-6)2+(y-8)2=1和两点A(-m,0),B(m,0)(m>0),若对圆上任意一点P,都有∠APB<90°,则m的取值范围是(  )
A.(9,10)B.(1,9)C.(0,9)D.(9,11)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数y=b+asinx(a<0)的最大值为-1,最小值为-5,
(1)求a,b的值;    
(2)求y=tan(3a+b)x的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,边长为3的等边三角形ABC的顶点A在x轴的正半轴上移动,∠AOD=30°,顶点B在射线,OD上随之移动,则线段CO的最大值为3$\sqrt{3}$+3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在研究色盲与性别的关系调查中,调查了男性480人,其中有38人患色盲,调查的520个女性中6人患色盲.
(Ⅰ)根据题中数据建立一个2×2的列联表;
(Ⅱ)在犯错误的概率不超过0.001的前提下,能否认为“性别与患色盲有关系”?
附:参考公式${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个几何体的三视图如图所示,其中俯视图是半径为r的圆,若该几何体的体积为9π,则它的表面积是(  )
A.27πB.36πC.45πD.54π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知一个几何体的三视图及尺寸如图所示,则该几何体的内切球的半径是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦点F1(-$\sqrt{5}$,0),若椭圆上存在一点D,满足以椭圆短轴为直径的圆与线段DF1相切于线段DF1的中点F
(1)求椭圆E的方程;
(2)过坐标原点O的直线交椭圆W:$\frac{{9{x^2}}}{{2{a^2}}}+\frac{{4{y^2}}}{b^2}$=1于P、A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连结AC并延长交椭圆W于B,求证:PA⊥PB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.双曲线3y2-x2=1的两条渐近线的夹角是$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案