精英家教网 > 高中数学 > 题目详情
8.如图,边长为3的等边三角形ABC的顶点A在x轴的正半轴上移动,∠AOD=30°,顶点B在射线,OD上随之移动,则线段CO的最大值为3$\sqrt{3}$+3.

分析 连接OC,当OC垂直平分AB时,线段OC的长最大,根据正弦定理和两角差的正弦公式即可求出

解答 解:如图:连接OC,当OC垂直平分AB时,OC最大.
此时∠ACO=30°,∠AOC=15°.
∴∠OCA=180°-30°-15°=135°,
在OCE中,由正弦定理可得$\frac{OC}{sin135°}$=$\frac{AC}{sin15°}$
∵sin15°=sin(45°-30°)=$\frac{\sqrt{2}}{2}$×$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{2}}{2}$×$\frac{1}{2}$$\frac{\sqrt{6}-\sqrt{2}}{4}$
∴OC=3$\sqrt{3}$+3,
故答案为:3$\sqrt{3}$+3

点评 本题考查正弦定理和两角差的正弦公式,考查了学生的运算能力,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知圆C:x2+y2+2x-4y+3=0.
(Ⅰ)设不过原点的直线l与圆C相切,且在x轴、y轴上的截距相等,求直线l的方程;
(Ⅱ)从圆C外一点P(x,y)向圆C引一条切线,切点为M,O为坐标原点,|MP|=|OP|,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知一个几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{4}{3}$B.8C.4D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a=(3,2)$,$\overrightarrow b=(x,4)$,且$\overrightarrow a$∥$\overrightarrow b$,则x的值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.经过下列两点的直线的斜率是否存?如果存在,求其斜率:
(1)(1,-1),(-3,2);(2)(1,-2),(5,-2);
(3)(3,4),(3,-1);(4)(3,0),(0,$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.条件p:|x+1|>2;条件q:{x|2<x<3},则?p是?q的(  )
A.必要不充分条件B.充要条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设x,y是正数,且x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则$\frac{{b}_{1}{b}_{2}}{({a}_{1}+{a}_{2})^{2}}$的最大值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的各项均为非零实数,且对于任意的正整数n,都有(a1+a2+a3+…+an2=a13+a23+a33+…+an3
(1)写出数列{an}的前三项a1,a2,a3(请写出所有可能的结果);
(2)是否存在满足条件的无穷数列{an},使得a2017=-2016?若存在,求出这样的无穷数列的一个通项公式;若不存在,说明理由;
(3)记an点所有取值构成的集合为An,求集合An中所有元素之和(结论不要证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列不等式的解集.
(1)-2x2+x<-3
(2)$\frac{x+1}{x-2}$≤2.

查看答案和解析>>

同步练习册答案