精英家教网 > 高中数学 > 题目详情
13.条件p:|x+1|>2;条件q:{x|2<x<3},则?p是?q的(  )
A.必要不充分条件B.充要条件
C.充分不必要条件D.既不充分也不必要条件

分析 利用不等式的解法、简易逻辑的判定方法即可得出.

解答 解:条件p:|x+1|>2,解得x>1或x<-3.可得¬p:[-3,1].
条件q:{x|2<x<3},¬q:(-∞,2]∪[3,+∞).
则?p是?q的充分不必要条件.
故选:C.

点评 本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.将函数$y=sin(x-\frac{π}{3})$的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移$\frac{π}{3}$个单位,所得图象的解析式是(  )
A.y=sin2xB.$y=sin(\frac{x}{2}-\frac{π}{6})$C.$y=-cos\frac{x}{2}$D.$y=sin(2x-\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=2sinxcosx-\sqrt{3}cos2x+1$(x∈R).
(1)化简f(x)并求f(x)的最小正周期;
(2)求f(x)在区间$x∈[\frac{π}{4},\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(-1,3),若m$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-m$\overrightarrow{b}$垂直,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,边长为3的等边三角形ABC的顶点A在x轴的正半轴上移动,∠AOD=30°,顶点B在射线,OD上随之移动,则线段CO的最大值为3$\sqrt{3}$+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线x+2y=m(m>0)与⊙O:x2+y2=5交于A,B两点,若|${\overrightarrow{OA}$+$\overrightarrow{OB}}$|>2|${\overrightarrow{AB}}$|,则m的取值范围是(  )
A.$({\sqrt{5},2\sqrt{5}})$B.$({2\sqrt{5},5})$C.$({\sqrt{5},5})$D.$({2,\sqrt{5}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个几何体的三视图如图所示,其中俯视图是半径为r的圆,若该几何体的体积为9π,则它的表面积是(  )
A.27πB.36πC.45πD.54π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一个几何体的三视图如图所示,其中俯视图为正方形,则最长侧棱(不包括底面的棱)的长度为(  )
A.2B.$\sqrt{6}$C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$α,β∈(0,\frac{π}{2})$,则下列不等式一定成立的是(  )
A.sin(α+β)<sinα+sinβB.sin(α+β)>sinα+sinβ
C.cos(α+β)<sinα+sinβD.cos(α+β)>cosα+cosβ

查看答案和解析>>

同步练习册答案