精英家教网 > 高中数学 > 题目详情
17.已知函数$f(x)=2sinxcosx-\sqrt{3}cos2x+1$(x∈R).
(1)化简f(x)并求f(x)的最小正周期;
(2)求f(x)在区间$x∈[\frac{π}{4},\frac{π}{2}]$上的最大值和最小值.

分析 (1)利用二倍角和辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,
(2)$x∈[\frac{π}{4},\frac{π}{2}]$上时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的最大值和最小值.

解答 解:函数$f(x)=2sinxcosx-\sqrt{3}cos2x+1$(x∈R).
化简可得:$f(x)=sin2x-\sqrt{3}cos2x+1$=$2sin(2x-\frac{π}{3})+1$.
∴f(x)的最小正周期T=$\frac{2π}{2}=π$.
(2)$x∈[\frac{π}{4},\frac{π}{2}]$上时,
易得$\frac{π}{6}≤2x-\frac{π}{3}≤\frac{2}{3}π$,
于是$\frac{1}{2}≤sin(2x-\frac{π}{3})≤1$,
即2≤f(x)≤3,
∴当$x=\frac{5π}{12}$时,f(x)max=3;
当$x=\frac{π}{4}$时,f(x)min=2.
故得f(x)在区间$x∈[\frac{π}{4},\frac{π}{2}]$上的最大值为3,最小值为2.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在△ABC中,内角A,B,C所对的边分别为a,b,c且2a cosC-c=2b.
(Ⅰ)求角A的大小;
(Ⅱ)若c=$\sqrt{2}$,角B的平分线BD=$\sqrt{3}$,求∠ADB和BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某校高一(1)班全体男生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图甲所示,据此解答如下问题:
(1)求该班全体男生的人数;
(2)求分数在[80,90)之间的男生人数,并计算频率公布直方图如图乙中[80,90)之间的矩形的高;
(3)根据频率分布直方图,估计该班全体男生的数学平均成绩(同一组中的数据用该组区间的中点值代表).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=sin2x+kcos2x的一条对称轴方程为$x=\frac{π}{6}$,则k=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知一个几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{4}{3}$B.8C.4D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若不等式n2-n(λ+1)+7≥λ,对一切n∈N*恒成立,则实数λ的取值范围(  )
A.λ≤3B.λ≤4C.2≤λ≤3D.3≤λ≤4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a=(3,2)$,$\overrightarrow b=(x,4)$,且$\overrightarrow a$∥$\overrightarrow b$,则x的值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.条件p:|x+1|>2;条件q:{x|2<x<3},则?p是?q的(  )
A.必要不充分条件B.充要条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知△ABC的顶点都在半径为R的球O的球面上,球心O到平面ABC的距离为$\frac{{\sqrt{3}}}{2}R$,$AB=BC=AC=\sqrt{3}$,则球O的体积是(  )
A.$\frac{16}{3}π$B.16πC.$\frac{32}{3}π$D.32π

查看答案和解析>>

同步练习册答案