精英家教网 > 高中数学 > 题目详情
2.若不等式n2-n(λ+1)+7≥λ,对一切n∈N*恒成立,则实数λ的取值范围(  )
A.λ≤3B.λ≤4C.2≤λ≤3D.3≤λ≤4

分析 推导出n2-n+7≥λ(n+1),从而λ≤$\frac{{n}^{2}-n+7}{n+1}$对一切n∈N*恒成立.由此利用基本不等式能求出实数λ的取值范围.

解答 解:∵不等式n2-n(λ+1)+7≥λ,对一切n∈N*恒成立,
∴n2-n+7≥λ(n+1),
∵n∈N*,∴λ≤$\frac{{n}^{2}-n+7}{n+1}$对一切n∈N*恒成立.
而$\frac{{n}^{2}-n+7}{n+1}$=$\frac{(n+1)^{2}-3(n+1)+9}{n+1}$=(n+1)+$\frac{9}{n+1}$-3≥$2\sqrt{(n+1)•\frac{9}{n+1}}$-3=3,
当且仅当n+1=$\frac{9}{n+1}$,即=2时等号成立,
∴n≤3.
故选:A.

点评 本题考查实数的取值范围的求法,涉及到数列、均值不等式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.某班举行联欢会,原来5个节目已经排定节目单,开演前又增加两个节目,将这两个节目插入原节目单,则不同的插入方法有42 种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,AB是⊙O的直径,PA垂直于⊙O所在平面,C是圆周上不同于A,B两点的任意一点,且AB=2,$PA=BC=\sqrt{3}$,则直线PC与底面ABC所成角的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2:x2-y2=4有相同的右焦点F2,点P是椭圆C1与双曲线C2在第一象限的公共点,若|PF2|=2,则椭圆C1的离心率等于$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=2sinxcosx-\sqrt{3}cos2x+1$(x∈R).
(1)化简f(x)并求f(x)的最小正周期;
(2)求f(x)在区间$x∈[\frac{π}{4},\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.$若f(n)=tan\frac{nπ}{3},(n∈{N^*}),则f(1)+f(2)+…+f(2017)$=(  )
A.$-\sqrt{3}$B.$\sqrt{3}$C.0D.$-2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(-1,3),若m$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-m$\overrightarrow{b}$垂直,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线x+2y=m(m>0)与⊙O:x2+y2=5交于A,B两点,若|${\overrightarrow{OA}$+$\overrightarrow{OB}}$|>2|${\overrightarrow{AB}}$|,则m的取值范围是(  )
A.$({\sqrt{5},2\sqrt{5}})$B.$({2\sqrt{5},5})$C.$({\sqrt{5},5})$D.$({2,\sqrt{5}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,则该几何体的体积为(  )
A.B.$\frac{46}{3}$πC.18πD.$\frac{52}{3}$π

查看答案和解析>>

同步练习册答案