精英家教网 > 高中数学 > 题目详情
3.已知$α,β∈(0,\frac{π}{2})$,则下列不等式一定成立的是(  )
A.sin(α+β)<sinα+sinβB.sin(α+β)>sinα+sinβ
C.cos(α+β)<sinα+sinβD.cos(α+β)>cosα+cosβ

分析 根据两角和的正弦、余弦公式即可得到结论.

解答 解:∵已知$α,β∈(0,\frac{π}{2})$,sin(α+β)=sinαcosβ+cosαsinβ,
∴0<cosβ<1,0<cosα<1,
∴sin(α+β)<sinα+sinβ成立,故A正确.
由于sin(α+β)=sinαcosβ+cosαsinβ,0<cosβ<1,0<cosα<1,不能推出它大于sinα+sinβ,
故B不正确.
由于cos(α+β)=cosαcosβ-sinαsinβ,0<cosβ<1,0<cosα<1,不能推出它小于sinα+sinβ,
故C错误.
由于cos(α+β)=cosαcosβ-sinαsinβ,0<cosβ<1,0<cosα<1,不能推出它大于sinα+sinβ,
故D错误.
故选:A.

点评 本题主要考查两角和的正弦、余弦公式的应用,以及利用正弦函数和余弦函数的有界性是解决本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.条件p:|x+1|>2;条件q:{x|2<x<3},则?p是?q的(  )
A.必要不充分条件B.充要条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知△ABC的顶点都在半径为R的球O的球面上,球心O到平面ABC的距离为$\frac{{\sqrt{3}}}{2}R$,$AB=BC=AC=\sqrt{3}$,则球O的体积是(  )
A.$\frac{16}{3}π$B.16πC.$\frac{32}{3}π$D.32π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)已知直线l的方程为ax-y+2+a=0(a∈R),求证:不论a为何实数,直线l恒过一定点P;
(2)过(1)中的点P作一条直线m,使它被直线l1:4x+y+3=0和l2:3x-5y-5=0截得的线段被点P平分,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列不等式的解集.
(1)-2x2+x<-3
(2)$\frac{x+1}{x-2}$≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“sinα<0”是“α为第三、四象限角”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一条直线a上的3个点A、B、C到平面M的距离都为1,这条直线和平面的关系是平行.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等差数列{an}中,a2=5,前4项和S4=28.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知O为坐标原点,圆M:x2+y2-2x-15=0,定点F(-1,0),点N是圆M上一动点,线段NF的垂直平分线交圆M的半径MN于点Q,点Q的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)不垂直于x轴且不过F点的直线l与曲线C相交于A,B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若过一定点,则求出该定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

同步练习册答案