精英家教网 > 高中数学 > 题目详情
12.已知等差数列{an}中,a2=5,前4项和S4=28.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

分析 (1)利用等差数列的通项公式与求和公式即可得出.
(2)利用等差数列的求和公式即可得出.

解答 解:(1)设等差数列{an}的公差为d,则由已知条件得$\left\{\begin{array}{l}{a_2}={a_1}+d=5\\{S_4}=4{a_1}+\frac{4×3}{2}×d=28\end{array}\right.$(2分)
∴$\left\{\begin{array}{l}{a_1}=1\\ d=4\end{array}\right.$(4分)
∴an=a1+(n-1)×d=4n-3(6分)
(2)由(1)可得${S_n}=n{a_1}+\frac{{n({n-1})}}{2}d=2{n^2}-n$(12分)

点评 本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.一个几何体的三视图如图所示,其中俯视图为正方形,则最长侧棱(不包括底面的棱)的长度为(  )
A.2B.$\sqrt{6}$C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$α,β∈(0,\frac{π}{2})$,则下列不等式一定成立的是(  )
A.sin(α+β)<sinα+sinβB.sin(α+β)>sinα+sinβ
C.cos(α+β)<sinα+sinβD.cos(α+β)>cosα+cosβ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$f(x)=\sqrt{x+1}+lg(x-3)$的定义域是(  )
A.[-1,3)B.(-∞,-1]C.[3,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知极坐标的极点在平面直角坐标系的原点O处,极轴与x轴的非负半轴重合,且长度单位相同.直线的极坐标方程为ρsin(θ-$\frac{π}{3}$)=$\sqrt{3}$,若点P为曲线C:$\left\{\begin{array}{l}x=2+2cosα\\ y=2sinα\end{array}\right.$,
(α为参数)上的动点.
(1)试写直线的直角坐标方程及曲线C的普通方程;
(2)求点P到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知不等式ax2-bx-1≥0的解是[-$\frac{1}{2}$,-$\frac{1}{3}$]
(1)求a,b的值;
(2)求不等式x2-bx-a<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,曲线${C_1}:\left\{{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数,t≠0),其中0≤a<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4sinθ,曲线${C_3}=ρ=4\sqrt{3}cosθ$.
(Ⅰ)求C2与C3交点的直角坐标系;
(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数$f(x)=|{x+b}|+|{x-\frac{1}{b}}|(b>0)$,则函数f(x)能取得(  )
A.最小值为2B.最大值为2C.最小值为-2D.最大值为-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图是4为评委给某作品打出的分数的茎叶图,那么4为评委打出的分数的方差是$\frac{5}{2}$.

查看答案和解析>>

同步练习册答案