精英家教网 > 高中数学 > 题目详情
已知x,y之间的一组数据如下表:
x
2
3
4
5
6
y
3
4
6
8
9
对于表中数据,现给出如下拟合直线:①y=x+1;②y=2x-1;,则根据最小二乘法的思想得拟合程度最好的直线是____________(填序号).

试题分析:于本题为选择题,故可用排除法,根据最小二乘法的思想得变量x与y间的线性回归直线方程的一个特点是:此直线必过点,故只需计算,并代入选项即可得正确结果.。由数据可知..,那么必须过点(5,6),经验证可知,选项①y=x+1;②y=2x-1;,中满足该点的方程为③,故答案为③。
点评:本题考察了最小二乘法的思想,线性回归方程的特点,理解最小二乘法,记住回归直线的性质是解决本题的关键
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

随机询问100名性别不同的大学生是否爱好踢毽子运动,得到如下的列联表:
 


总计
爱好
10
40
50
不爱好
20
30
50
总计
30
70
100
附表:
P(K2k0)
0.10
0.05
0.025
k0
2.706
3.841
5.024
经计算,统计量K2=4.762,参照附表,得到的正确结论是(  ).
A.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”
B.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”
C.有97.5%以上的把握认为“爱好该项运动与性别有关”
D.有97.5%以上的把握认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

S大学艺术系表演专业的报考人数连创新高,2010年报名刚结束,某考生想知道这次报考该专业的人数.已知该专业考生的考号是按0001,0002,…的顺序从小到大依次排列的,他随机了解了50名考生的考号,经计算,这50个考号的和是25025, 估计2010年报考S大学艺术系表演专业的考生大约有(  )
A.500人B.1000人C.1500人D.2000人

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:

(1)这一组的频数、频率分别是多少?
(2)估计这次环保知识竞赛的及格率(分及以上为及格)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准GB3095-2012, PM2.5日均值在35微克/立方米以下空气质量为一级;在35~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2012年全年每天的PM2.5监测值数据中随机地抽取12天的数据作为样本,监测值频数如茎叶图所示(十位为茎,个位为叶):

(I)求空气质量为超标的数据的平均数与方差;
(II)从空气质量为二级的数据中任取2个,求这2个数据的和小于100的概率;
(III)以这12天的PM2.5日均值来估计2012年的空气质量情况,估计2012年(366天)大约有多少天的空气质量达到一级或二级.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

从某学校的名男生中随机抽取名测量身高,被测学生身高全部介于cm和cm之间,将测量结果按如下方式分成八组:第一组[,),第二组[,),…,第八组[,],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为人.
(Ⅰ)求第七组的频率;

(Ⅱ)估计该校的名男生的身高的中位数以及身高在cm以上(含cm)的人数;
(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件{},事件{},求

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知样本7,8,9,x,y的平均数是8,且xy=60,则此样本的标准差是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

延迟退休年龄的问题,近期引发社会的关注.人社部于2012年7月25日上午召开新闻发布会表示,我国延迟退休年龄将借鉴国外经验,拟对不同群体采取差别措施,并以“小步慢走”的方式实施.推迟退休年龄似乎是一种必然趋势,然而反对的声音也随之而起.现对某市工薪阶层关于“延迟退休年龄”的态度进行调查,随机抽取了50人,他们月收入的频数分布及对“延迟退休年龄”反对的人数
月收入(元)
[1000,2000)
[2000,3000)
[3000,4000)
[4000,5000)
[5000,6000)
[6000,7000)
频数
5
10
15
10
5
5
反对人数
4
8
12
5
2
1
(1)由以上统计数据估算月收入高于4000的调查对象中,持反对态度的概率;
(2)若对月收入在[1000,2000),[4000,5000)的被调查对象中各随机选取两人进行跟踪调查,记选中的4人中赞成“延迟退休年龄”的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

两个变量x,y与其线性相关系数r有下列说法
(1)若r>0,则x增大时,y也相应增大; (2)若r<0,则x增大时,y也相应增大;
(3)若r=1或r=-1,则x与y的关系完全对应( 有函数关系),在散点图上各个散点均在一条直线上.其中正确的有(     )
A.①B.②③C.①③D.①②③

查看答案和解析>>

同步练习册答案