精英家教网 > 高中数学 > 题目详情
2.已知直线ax-y+2a=0的倾斜角为$\frac{3π}{4}$,则a等于(  )
A.1B.-1C.$\sqrt{2}$D.-$\sqrt{2}$

分析 求出直线的斜率,得到a=tan$\frac{3π}{4}$,求出a的值即可.

解答 解:由已知得a=tan$\frac{3π}{4}$=-1,
故选:B.

点评 本题考查了求直线的斜率问题,考查三角函数求值,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设集合A={x|(x-2)(x-3)≥0},集合B={x|x>0},则A∩B=[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合$A=\{\left.x\right|y=\sqrt{2x-{x^2}}\}$,B={y|y=2x,x>0},则A∪B=(  )
A.(1,2]B.[0,+∞)C.[0,1)∪(1,2]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某高校在举行艺术类高考招生考试时,对100个考生进行了一项专业水平考试,考试成绩满分为100分,成绩出来后,老师对每个成绩段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]的人数进行了统计,丙得到如图所示的频率分布直方图.
(1)求a的值,并从频率分布直方图中求出这些成绩的中位数;
(2)为了能从分了解考生情况,对考试成绩落在[70,90)内的考生采用分层抽样的方法抽取5名考生.
(i)求在[70,80)与[80,90)内各抽取多少名考生;
(ii)如果从这5名中选出两人进行一段表演,求恰有一名考生来自[80,90)组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知中心在坐标原点的双曲线的一个焦点与抛物线y=-$\frac{1}{4}$x2的焦点重合,且双曲线的离心率等于$\sqrt{5}$,则该双曲线的渐近线方程为(  )
A.y=±2xB.y=±$\frac{2\sqrt{5}}{5}$xC.y=±$\frac{\sqrt{5}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线m:ax-y+a+3=0与直线n:2x-y=0平行,则直线m与n间的距离为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.P为抛物线x2=-4y上一点,A(2$\sqrt{2}$,0),则P到此抛物线的准线的距离与P到点A的距离之和的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列四个类比中,正确得个数为(  )
(1)若一个偶函数在R上可导,则该函数的导函数为奇函数,将此结论类比到奇函数的结论为:若一个奇函数在R上可导,则该函数的导函数为偶函数.
(2)若双曲线的焦距是实轴长的2倍,则此双曲线的离心率为2.将此结论类比到椭圆的结论为:若椭圆的焦距是长轴长的一半,则此椭圆的离心率为$\frac{1}{2}$.
(3)若一个等差数列的前3项和为1,则该数列的第2项为$\frac{1}{3}$.将此结论类比到等比数列的结论为:若一个等比数列的前3项积为1,则该数列的第2项为1.
(4)在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4,将此结论类比到空间中的结论为:在空间中,若两个正四面体的棱长比为1:2,则它们的体积比为1:8.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.等差数列{an}中,已知a1=-1,S19=0,则使an>0的最小正整数n为11.

查看答案和解析>>

同步练习册答案