精英家教网 > 高中数学 > 题目详情
14.P为抛物线x2=-4y上一点,A(2$\sqrt{2}$,0),则P到此抛物线的准线的距离与P到点A的距离之和的最小值为3.

分析 利用抛物线的定义结合不等式求解即可.

解答 解:因为P为抛物线x2=-4y上一点,A(2$\sqrt{2}$,0)在抛物线的外侧,由抛物线的定义可得:P到准线的距离d等于到焦点的距离,则P到此抛物线的准线的距离与P到点A的距离之和为:d+|PA|=|PF|+|PA|≥|AF|=3,
所求的最小值为3.
故答案为:3.

点评 本题考查抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知tanx=2,则$\frac{3sinx+cosx}{cosx-3sinx}$的值为-$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某汽车的使用年数x与所支出的维修费用y的统计数据如表:
 使用年数x(单位:年) 1 2 3 4 5
 维修总费用y(单位:万元) 0.5 1.2 2.2 3.3 4.5
根据上表可得y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x-0.69,若该汽车维修总费用超过10万元就不再维修,直接报废,据此模型预测该汽车最多可使用(  )
A.8年B.9年C.10年D.11年

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直线ax-y+2a=0的倾斜角为$\frac{3π}{4}$,则a等于(  )
A.1B.-1C.$\sqrt{2}$D.-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.复数z=(1-i)(4-i)的共轭复数的虚部为(  )
A.-5iB.5iC.-5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.执行如图所示的程序框图,输出的T=29.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.三位老师和三位学生站成一排,要求任何两位学生都不相邻,则不同的排法总数为(  )
A.720B.144C.36D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=xlnx.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若关于x的不等式f(x)≤λ(x2-1)对任意x∈[1,+∞)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在四面体ABCD中,二面角A-BC-D为60°,点P为直线BC上一动点,记直线PA与平面BCD所成的角为θ,则(  )
A.θ的最大值为60°B.θ的最小值为60°C.θ的最大值为30°D.θ的最小值为30°

查看答案和解析>>

同步练习册答案