精英家教网 > 高中数学 > 题目详情
5.某汽车的使用年数x与所支出的维修费用y的统计数据如表:
 使用年数x(单位:年) 1 2 3 4 5
 维修总费用y(单位:万元) 0.5 1.2 2.2 3.3 4.5
根据上表可得y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x-0.69,若该汽车维修总费用超过10万元就不再维修,直接报废,据此模型预测该汽车最多可使用(  )
A.8年B.9年C.10年D.11年

分析 计算$\overline{x}$、$\overline{y}$,求出回归系数,写出回归方程,据此模型预测该汽车最多可使用年限.

解答 解:计算$\overline{x}$=$\frac{1}{5}$×(1+2+3+4+5)=3,
$\overline{y}$=$\frac{1}{5}$×(0.5+1.2+2.2+3.3+4.5)=2.34;
 代入回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x-0.69得
2.34=$\stackrel{∧}{b}$×3-0.69,
解得$\stackrel{∧}{b}$=1.01;
∴回归方程为$\stackrel{∧}{y}$=1.01x-0.69,
令$\stackrel{∧}{y}$=1.01x-0.69≥10,
解得x≥10.6≈11,
据此模型预测该汽车最多可使用11年.
故选:D.

点评 本题考查了线性回归方程过样本中心点的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知${log_{\frac{1}{2}}}a<{log_{\frac{1}{2}}}b$,则下列不等式一定成立的是(  )
A.${({\frac{1}{4}})^a}<{({\frac{1}{3}})^b}$B.$\frac{1}{a}>\frac{1}{b}$C.ln(a-b)>0D.3a-b<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.物体运动方程为$S=\frac{1}{4}{t^4}-3$,则t=2时瞬时速度为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合$A=\{\left.x\right|y=\sqrt{2x-{x^2}}\}$,B={y|y=2x,x>0},则A∪B=(  )
A.(1,2]B.[0,+∞)C.[0,1)∪(1,2]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1,F2,焦距为2c(c>0),抛物线y2=2cx的准线交双曲线左支于A,B两点,且∠AOB=120°,其中O为原点,则双曲线的离心率为(  )
A.2B.$1+\sqrt{2}$C.$1+\sqrt{3}$D.$1+\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某高校在举行艺术类高考招生考试时,对100个考生进行了一项专业水平考试,考试成绩满分为100分,成绩出来后,老师对每个成绩段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]的人数进行了统计,丙得到如图所示的频率分布直方图.
(1)求a的值,并从频率分布直方图中求出这些成绩的中位数;
(2)为了能从分了解考生情况,对考试成绩落在[70,90)内的考生采用分层抽样的方法抽取5名考生.
(i)求在[70,80)与[80,90)内各抽取多少名考生;
(ii)如果从这5名中选出两人进行一段表演,求恰有一名考生来自[80,90)组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知中心在坐标原点的双曲线的一个焦点与抛物线y=-$\frac{1}{4}$x2的焦点重合,且双曲线的离心率等于$\sqrt{5}$,则该双曲线的渐近线方程为(  )
A.y=±2xB.y=±$\frac{2\sqrt{5}}{5}$xC.y=±$\frac{\sqrt{5}}{2}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.P为抛物线x2=-4y上一点,A(2$\sqrt{2}$,0),则P到此抛物线的准线的距离与P到点A的距离之和的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}的前n项和为Sn,且a1=1,an+1=$\left\{\begin{array}{l}{{a}_{n}+3,\frac{n}{3}∉{N}^{*}}\\{{a}_{n},\frac{n}{3}∈{N}^{*}}\end{array}\right.$若S3n≤λ•3n-1恒成立,则实数λ的取值范围为[14,+∞).

查看答案和解析>>

同步练习册答案