精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A、B、C的对边分别是a、b、c,且bsinB=asinA+(c-
3
a)sinC.
(1)求角B的大小;
(2)设b2-4bcos(A-C)+4=0,求△ABC的面积S.
考点:正弦定理,余弦定理
专题:解三角形
分析:(1)△ABC中,由条件利用正弦定理可得
3
ac=a2+c2-b2
,再由由余弦定理求得cosB的值,从而求得B的值.
(2)对于b2-4bcos(A-C)+4=0,由判别式△≥0,可得sin2(A-C)=0,进而得A=C,即a=c,且b=2,再由余弦定理求得a2的值,从而求得△ABC的面积S.
解答: 解:(1)△ABC中,由bsinB=asinA+(c-
3
a)sinC利用正弦定理可得b2=a2+(c-
3
a)c
,即
3
ac=a2+c2-b2

由余弦定理得cosB=
a2+c2-b2
2ac
=
3
2
,∴B=30°.
(2)对于b2-4bcos(A-C)+4=0,∵△=16cos2(A-C)-16=-16sin2(A-C)≥0,
∴sin2(A-C)=0,得A=C,且b=
4cos(A-C)
2
=2

∴a=c,∴b2=22=2a2-2a2cos30°,
解得a2=
4
2-
3
=8+4
3

S=
1
2
a2sin300=2+
3
点评:本题主要考查正弦定理、余弦定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题错误的是(  )
A、命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
B、若命题p:?x∈R,x2+x+1=0,则“?p”为:?x∈R,x2+x+1≠0
C、“x>2”是“x2-3x+2>0”的充分不必要条件
D、若“p∧q”为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|
1+x
1-x
≥0}
,集合B={y|y=sinx,x∈R},则B∩CRA=(  )
A、∅B、{1}
C、{-1}D、{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)过点P(-1,-1),c为椭圆的半焦距,且c=
2
b.过点P作两条互相垂直的直线l1,l2与椭圆C分别交于另两点M,N.
(1)求椭圆C的方程;
(2)若直线l1的斜率为-1,求△PMN的面积;
(3)若线段MN的中点在x轴上,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为平行四边形,AB=1,BC=
2
,∠ABC=45°,点E在PC上,AE⊥PC.
(Ⅰ)证明:平面AEB⊥平面PCD;
(Ⅱ)若二面角B-AE-D的大小为150°,求∠PDC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:sinx(1+tanxtan
x
2
)=tanx.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出y=cosx的图象,写出其单调区间,对称轴,对称中心并写出函数最大值,最小值及对应x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知轴对称平面五边形ADCEF(如图1),BC为对称轴,AD⊥CD,AD=AB=1,CD=BC=
3
,将此图形沿BC折叠成直二面角,连接AF、DE得到几何体(如图2).
(1)证明:AF∥平面DEC;      
(2)求二面角E-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,由曲线y=x2+4与直线y=5x,x=0,x=4所围成平面图形的面积.

查看答案和解析>>

同步练习册答案