精英家教网 > 高中数学 > 题目详情
13.对于实数m,n定义运算“⊕”:m⊕n=$\left\{\begin{array}{l}{-{m}^{2}+2mn-1,m≤n}\\{{n}^{2}-mn,m>n}\end{array}\right.$设f(x)=(2x-1)⊕(x-1),且关于x的方程f(x)=a恰有三个互不相等的实数根x1,x2,x3,则x1+x2+x3的取值范围是(  )
A.(-$\frac{7}{8}$,1)B.(-$\frac{1}{8}$,0)C.( $\frac{7}{8}$,1)D.(0,$\frac{1}{16}$)

分析 由新定义,可以求出函数的解析式,进而求出x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根时,实数m的取值范围,及三个实根之间的关系,进而求出x1+x2+x3的取值范围.

解答 解:由2x-1≤x-1,得x≤0,此时f(x)=(2x-1)*(x-1)=-(2x-1)2+2(2x-1)(x-1)-1=-2x,
由2x-1>x-1,得x>0,此时f(x)=(2x-1)*(x-1)=(x-1)2-(2x-1)(x-1)=-x2+x,
∴f(x)=(2x-1)⊕(x-1)=$\left\{\begin{array}{l}{-2x,x≤0}\\{{-x}^{2}+x,x>0}\end{array}\right.$,
作出函数的图象可得,

要使方程f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3
不妨设x1<x2<x3
则0<x2<$\frac{1}{2}$<x3<1,且x2和x3,关于x=$\frac{1}{2}$对称,
∴x2+x3=2×$\frac{1}{2}$=1,
当-2x=$\frac{1}{4}$时,解得x=-$\frac{1}{8}$,
∴-$\frac{1}{8}$<x1<0,
∴$\frac{7}{8}$<x1+x2+x3<1,
故选:C.

点评 本题考查根的存在性及根的个数判断,根据已知新定义,求出函数的解析式,并分析出函数图象是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1的右焦点为F,过F作斜率为2的直线l,直线l与双曲线的右支有且只有一个公共点,则双曲线的离心率范围$(1,\sqrt{5}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.高一某班级在学校数学嘉年华活动中推出了一款数学游戏,受到大家的一致追捧.游戏规则如下:游戏参与者连续抛掷一颗质地均匀的骰子,记第i次得到的点数为xi,若存在正整数n,使得x1+x2+…+xn=6,则称n为游戏参与者的幸运数字.
(Ⅰ)求游戏参与者的幸运数字为1的概率;
(Ⅱ)求游戏参与者的幸运数字为2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,AC=2,BC=4,∠ACB=$\frac{2}{3}$π,直角梯形BCDE中,BC∥DE,∠BCD=$\frac{π}{2}$,DE=2,且直线AE与CD所成角为$\frac{π}{3}$,AB⊥CD.
(1)求证:平面ABC⊥平面BCDE;
(2)求三棱锥C-ABE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.同时掷两枚骰子,所得点数之和为5的概率为(  )
A.$\frac{1}{12}$B.$\frac{1}{21}$C.$\frac{1}{9}$D.$\frac{1}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=$\frac{1}{\sqrt{1-x}}$+$\sqrt{2x}$的定义域为{x|0≤x<1}..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知在实数集R上的可导函数f(x),满足f(x+1)是奇函数,且当x≥1时,$\frac{1}{f′(x)}$>1(其中f′(x)为f(x)的导函数),则不等式f(x)>x-1的解集是(  )
A.(0,1)B.(1,+∞)C.(-∞,1)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.直线l经过点P(3,2)且与x、y轴的正半轴分别交于A、B两点,
(1)若△OAB的面积为12,求直线l的方程;
(2)记△AOB的面积为S,求当S取最小值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}的前n项和Sn满足:Sn=nan-2n(n-1),等比数列{bn}的前n项和为Tn,公比为a1,且T5=T3+2b5
(I)求数列{an}的通项公式;
(II)求数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和为Mn

查看答案和解析>>

同步练习册答案