精英家教网 > 高中数学 > 题目详情
18.函数y=$\frac{1}{\sqrt{1-x}}$+$\sqrt{2x}$的定义域为{x|0≤x<1}..

分析 由根式内部的代数式大于等于0,分式的分母不为0联立不等式组求解.

解答 解:由$\left\{\begin{array}{l}{1-x>0}\\{2x≥0}\end{array}\right.$,解得0≤x<1.
∴函数y=$\frac{1}{\sqrt{1-x}}$+$\sqrt{2x}$的定义域为:{x|0≤x<1}.
故答案为:{x|0≤x<1}.

点评 本题考查函数的定义域及其求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若方程$\frac{x^2}{k-4}$+$\frac{y^2}{k+1}$=1表示的曲线是双曲线,则k的取值范围是(-1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=sin(2x-$\frac{π}{6}$),x∈[0,π]的递增区间是$[0,\frac{π}{3}]$,$[\frac{5π}{6},π]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知x,y满足不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y-3≤0}\end{array}\right.$,则目标函数z=2x-y的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.对于实数m,n定义运算“⊕”:m⊕n=$\left\{\begin{array}{l}{-{m}^{2}+2mn-1,m≤n}\\{{n}^{2}-mn,m>n}\end{array}\right.$设f(x)=(2x-1)⊕(x-1),且关于x的方程f(x)=a恰有三个互不相等的实数根x1,x2,x3,则x1+x2+x3的取值范围是(  )
A.(-$\frac{7}{8}$,1)B.(-$\frac{1}{8}$,0)C.( $\frac{7}{8}$,1)D.(0,$\frac{1}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.要得到y=2sin(ωx+$\frac{π}{5}$)(ω>0)的图象,只需将函数y=2sinωx的图象(  )
A.向左平移$\frac{π}{5}$个单位B.向右平移$\frac{π}{5}$个单位
C.向左平移$\frac{π}{5ω}$个单位D.向右平移$\frac{π}{5ω}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.对于任意实数x,[x]表示不超过x的最大整数,如[1.1]=1,[-2.1]=-3.定义在R上的函数f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0<x<1},则A中所有元素之和为44.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=$\left\{\begin{array}{l}{x-3,(x≥100)}\\{f[f(x+5)],(x<100)}\end{array}\right.$,则f(97)的值为(  )
A.94B.98C.99D.104

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.命题“若x=1或x=2,则x2-3x+2=0”的逆否命题是“若x2-3x+2≠0,则x≠1且x≠2”;且这个逆否命题为真命题(判断真假)

查看答案和解析>>

同步练习册答案