精英家教网 > 高中数学 > 题目详情
4.高一某班级在学校数学嘉年华活动中推出了一款数学游戏,受到大家的一致追捧.游戏规则如下:游戏参与者连续抛掷一颗质地均匀的骰子,记第i次得到的点数为xi,若存在正整数n,使得x1+x2+…+xn=6,则称n为游戏参与者的幸运数字.
(Ⅰ)求游戏参与者的幸运数字为1的概率;
(Ⅱ)求游戏参与者的幸运数字为2的概率.

分析 (Ⅰ)基本事件空间为ΩA={1,2,3,4,5,6},共有6个基本事件,而A={6},只有1个基本事件,即可求游戏参与者的幸运数字为1的概率;
(Ⅱ)由题意知x1+x2=6,抛掷了2次骰子,相应的基本事件空间为ΩB={(x1,x2)|1≤x1≤6,1≤x2≤6,x1∈N,x2∈N},共有36个基本事件,而B={(1,5),(2,4),(3,3),(4,2),(5,1)},共有5个基本事件,即可求游戏参与者的幸运数字为2的概率.

解答 解:(Ⅰ)设“游戏参与者的幸运数字为1”为事件A-------------(1分)
由题意知x1=6,抛掷了1次骰子,
相应的基本事件空间为ΩA={1,2,3,4,5,6},共有6个基本事件,-------------(2分)
而A={6},只有1个基本事件,------------(3分)
所以$P(A)=\frac{1}{6}$------------(4分)
(Ⅱ)设“游戏参与者的幸运数字为2”为事件B,------------(5分)
由题意知x1+x2=6,抛掷了2次骰子,
相应的基本事件空间为ΩB={(x1,x2)|1≤x1≤6,1≤x2≤6,x1∈N,x2∈N},
共有36个基本事件,-----------(6分)
而B={(1,5),(2,4),(3,3),(4,2),(5,1)},共有5个基本事件,----------(7分)
所以$P(B)=\frac{5}{36}$.-----------(8分)

点评 本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=5,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角的正切值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若曲线C1:y=1+lnx与曲线C2:y=x3-2x2+kx有公共点,则实数k的取值范围为(  )
A.(0,2]B.(-∞,2]C.(-∞,1]D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在定义域内单调递增,且为奇函数的为(  )
A.y=x2B.y=x3C.y=-$\frac{1}{x}$D.y=x-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an},{bn},满足a1=b1=3,an+1-an=$\frac{{b}_{n+1}}{{b}_{n}}$=3,n∈N*,若数列{cn}满足cn=b${\;}_{{a}_{n}}$,则c2017=(  )
A.92016B.272016C.92017D.272017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=sin(2x-$\frac{π}{6}$),x∈[0,π]的递增区间是$[0,\frac{π}{3}]$,$[\frac{5π}{6},π]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=ax(a>0且a≠1)在[-2,1]上的最大值为4,最小值为b,且函数g(x)=(2-7b)x是减函数,则a+b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.对于实数m,n定义运算“⊕”:m⊕n=$\left\{\begin{array}{l}{-{m}^{2}+2mn-1,m≤n}\\{{n}^{2}-mn,m>n}\end{array}\right.$设f(x)=(2x-1)⊕(x-1),且关于x的方程f(x)=a恰有三个互不相等的实数根x1,x2,x3,则x1+x2+x3的取值范围是(  )
A.(-$\frac{7}{8}$,1)B.(-$\frac{1}{8}$,0)C.( $\frac{7}{8}$,1)D.(0,$\frac{1}{16}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)是定义在(0,+∞)上的减函数,对任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)-1,且f(4)=5.
(1)求f(1)的值;
(2)解不等式f(m-2)≥2.

查看答案和解析>>

同步练习册答案