分析 (Ⅰ)基本事件空间为ΩA={1,2,3,4,5,6},共有6个基本事件,而A={6},只有1个基本事件,即可求游戏参与者的幸运数字为1的概率;
(Ⅱ)由题意知x1+x2=6,抛掷了2次骰子,相应的基本事件空间为ΩB={(x1,x2)|1≤x1≤6,1≤x2≤6,x1∈N,x2∈N},共有36个基本事件,而B={(1,5),(2,4),(3,3),(4,2),(5,1)},共有5个基本事件,即可求游戏参与者的幸运数字为2的概率.
解答 解:(Ⅰ)设“游戏参与者的幸运数字为1”为事件A-------------(1分)
由题意知x1=6,抛掷了1次骰子,
相应的基本事件空间为ΩA={1,2,3,4,5,6},共有6个基本事件,-------------(2分)
而A={6},只有1个基本事件,------------(3分)
所以$P(A)=\frac{1}{6}$------------(4分)
(Ⅱ)设“游戏参与者的幸运数字为2”为事件B,------------(5分)
由题意知x1+x2=6,抛掷了2次骰子,
相应的基本事件空间为ΩB={(x1,x2)|1≤x1≤6,1≤x2≤6,x1∈N,x2∈N},
共有36个基本事件,-----------(6分)
而B={(1,5),(2,4),(3,3),(4,2),(5,1)},共有5个基本事件,----------(7分)
所以$P(B)=\frac{5}{36}$.-----------(8分)
点评 本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,2] | B. | (-∞,2] | C. | (-∞,1] | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 92016 | B. | 272016 | C. | 92017 | D. | 272017 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{7}{8}$,1) | B. | (-$\frac{1}{8}$,0) | C. | ( $\frac{7}{8}$,1) | D. | (0,$\frac{1}{16}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com