分析 根据条件进行向量数量积的运算便可得出$4+2cos<\overrightarrow{a},\overrightarrow{b}>=5$,从而得出cos<$\overrightarrow{a},\overrightarrow{b}$>的值,进而得出tan$<\overrightarrow{a},\overrightarrow{b}>$的值.
解答 解:根据条件,$\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow{b})={\overrightarrow{a}}^{2}+\overrightarrow{a}•\overrightarrow{b}$=$4+2•1cos<\overrightarrow{a},\overrightarrow{b}>=5$;
∴$cos<\overrightarrow{a},\overrightarrow{b}>=\frac{1}{2}$;
∴$<\overrightarrow{a},\overrightarrow{b}>=\frac{π}{3}$;
∴$tan<\overrightarrow{a},\overrightarrow{b}>=tan\frac{π}{3}=\sqrt{3}$.
故答案为:$\sqrt{3}$.
点评 考查向量数量积的运算及计算公式,向量夹角的概念及范围,已知三角函数值求角.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com