精英家教网 > 高中数学 > 题目详情
4.在平面直角坐标系xOy中,已知曲线C上任意一点到点$(\frac{3}{2},0)$的距离与到直线$x=-\frac{3}{2}$的距离相等.
(1)求曲线C的方程;
(2)若曲线C上的两个动点A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=4,线段AB的垂直平分线与x轴交于点C,求△ABC面积的最大值.

分析 (1)依题意,曲线C是以F$(\frac{3}{2},0)$为焦点,直线$x=-\frac{3}{2}$为准线的抛物线,由此可求曲线E的方程;
(2)设线段AB的中点为M(x0,y0),求出线段AB的垂直平分线的方程,直线AB的方程代入抛物线方程,利用韦达定理,进而可得S△ABC=$\frac{1}{2}$|AB|h=$\frac{1}{3}\sqrt{(9+{{y}_{0}}^{2})^{2}(12-{{y}_{0}}^{2})}$,利用换元法,构造函数,利用导数知识,即可求得结论.

解答 解:(1)∵曲线C上任意一点到点$(\frac{3}{2},0)$的距离与到直线$x=-\frac{3}{2}$的距离相等,
∴曲线C是以F$(\frac{3}{2},0)$为焦点,直线$x=-\frac{3}{2}$为准线的抛物线.
∴曲线C的方程为y2=6x.
(2)设线段AB的中点为M(x0,y0),则x0=2,y1+y2=2y0,∴kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{6}{{y}_{1}+{y}_{2}}$=$\frac{3}{{y}_{0}}$,
∴线段AB的垂直平分线的方程为y-y0=-$\frac{{y}_{0}}{3}$(x-2).
令y=0,得x=5,故C(5,0)为定点.
又直线AB的方程为y-y0=$\frac{3}{{y}_{0}}$(x-2),与y2=6x联立,消去x得y2-2y0y+2y02-12=0.
由韦达定理得y1+y2=2y0,y1y2=2y02-12.
∴|AB|=$\frac{2}{3}\sqrt{(9+{{y}_{0}}^{2})(12-{{y}_{0}}^{2})}$
∵点C到直线AB的距离为h=|CM|=$\sqrt{9+{{y}_{0}}^{2}}$
∴S△ABC=$\frac{1}{2}$|AB|h=$\frac{1}{3}\sqrt{(9+{{y}_{0}}^{2})^{2}(12-{{y}_{0}}^{2})}$
令t=9+y02(t>9),则12-y02=21-t
设f(t)=(9+y022(12-y02)=t2(21-t)=-t3+21t2,∴f′(t)=-3t(t-14)
当9<t<14时,f′(t)>0;当t>14时,f′(t)<0.
∴f(t)在(9,14)上单调递增,在(14,+∞)上单调递减.
∴当t=14时,[f(t)]max=142×7.故△ABC面积的最大值为$\frac{14}{3}\sqrt{7}$.(13分)

点评 本题考查抛物线的定义,考查抛物线的标准方程,考查直线与抛物线的位置关系,考查三角形面积的计算及最值的求解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.若函数$f(x)=\frac{{a{x^2}+4}}{bx}$,且f(1)=5,f(2)=4.
(1)求a,b的值,写出f(x)的表达式;
(2)求证f(x)在[2,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a,b是非零实数,f(x)=ebx-ax,若对任意的,x∈R,f(x)≥1恒成立,则$\frac{b}{a}$=(  )
A.2B.ln2C.1D.$\root{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数y=f(x)在R上有定义,对于任一给定的正数p,定义函数${f_p}(x)=\left\{\begin{array}{l}f(x),f(x)≤p\\ p,f(x)>p\end{array}\right.$,则称函数fp(x)为f(x)的“p界函数”,若给定函数f(x)=x2-2x-1,p=2,则下列结论不成立的是:②.
①fp[f(0)]=f[fp(0)];       ②fp[f(1)]=f[fp(1)];
③fp[fp(2)]=f[f(2)];       ④fp[fp(3)]=f[f(3)].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设$a={log_{\frac{1}{3}}}\frac{1}{2},b={log_{\frac{1}{3}}}\frac{2}{3},c={log_3}1$,则a,b,c大小关系是a>b>c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)的导函数为f′(x),且$ef(x)-{f^'}(1){e^x}+ef(0)x-\frac{1}{2}e{x^2}=0$.
(1)求f(x)的解析式;
(2)若方程$f(x)-\frac{1}{2}{x^2}-m=0$在区间[-1,2]上恰有两个不同的实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.不等式x2+x-2<0的解集为(  )
A.(-1,2)B.(-∞,-1)∪(2,+∞)C.(-2,1)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数是偶函数又在(0,+∞)上递减的是(  )
A.y=x2+1B.y=|x|C.y=-x2+1D.$y=\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=5,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角的正切值为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案