精英家教网 > 高中数学 > 题目详情
19.设数列{an}的前n项和为Sn,且Sn=$\frac{{3}^{n}-1}{2}$,记bn=2(1+log3an) (n∈N*).
(Ⅰ)求数列{anbn}的前n项和Tn
(Ⅱ)求证:对于任意的正整数n,都有$\frac{1+{b}_{1}}{{b}_{1}}$•$\frac{1+{b}_{2}}{{b}_{2}}$•…•$\frac{1+{b}_{n}}{{b}_{n}}$<$\sqrt{2n+1}$成立;
(Ⅲ)求证:对于任意的正整数n,都有($\frac{{b}_{1}-1}{{b}_{1}}$)2•($\frac{{b}_{2}-1}{{b}_{2}}$)2•…•($\frac{{b}_{n}-1}{{b}_{n}}$)2≥$\frac{1}{4n}$成立.

分析 (I)由Sn=$\frac{{3}^{n}-1}{2}$,n=1时,a1=S1;n≥2时,an=Sn-Sn-1,可得:an=3n-1.于是bn=2n.anbn=2n•3n-1.再利用“错位相减法”与等比数列的求和公式即可得出.
(II)利用$\frac{1+{b}_{n}}{{b}_{n}}$=$\frac{1+2n}{2n}$<$\frac{2n}{2n-1}$.1+2n=2(n+1)-1.设Tn=$\frac{1+{b}_{1}}{{b}_{1}}$•$\frac{1+{b}_{2}}{{b}_{2}}$•…•$\frac{1+{b}_{n}}{{b}_{n}}$,可得Tn<$\frac{1}{{T}_{n}}$×(1+2n),即可证明.
(III)n=1时,$(\frac{2-1}{2})^{2}$=$\frac{1}{4}$,可得左边=右边,成立.n≥2时,$(\frac{{b}_{n}-1}{{b}_{n}})^{2}$=$(\frac{2n-1}{2n})^{2}$≥$\frac{n-1}{n}$,即可证明.

解答 (I)解:∵Sn=$\frac{{3}^{n}-1}{2}$,∴n=1时,a1=S1=$\frac{3-1}{2}$=1;n≥2时,an=Sn-Sn-1=$\frac{{3}^{n}-1}{2}$-$\frac{{3}^{n-1}-1}{2}$,化为:an=3n-1,n=1时也成立.∴an=3n-1.∴bn=2(1+log3an)=2n.
∴anbn=2n•3n-1
∴数列{anbn}的前n项和Tn=2(1+2×3+3×32+…+n•3n-1).
∴3Tn=2[3+2×32+…+(n-1)•3n-1+n•3n],
∴-2Tn=2(1+3+32+…+3n-1-n•3n)=2×$(\frac{{3}^{n}-1}{3-1}-n•{3}^{n})$=(1-2n)•3n-1,
∴Tn=$\frac{1+(2n-1)•{3}^{n}}{2}$.
(II)证明:$\frac{1+{b}_{n}}{{b}_{n}}$=$\frac{1+2n}{2n}$<$\frac{2n}{2n-1}$.1+2n=2(n+1)-1.
∴Tn=$\frac{1+{b}_{1}}{{b}_{1}}$•$\frac{1+{b}_{2}}{{b}_{2}}$•…•$\frac{1+{b}_{n}}{{b}_{n}}$=$\frac{1+2}{2×1}$×$\frac{1+2×2}{2×2}$×…×$\frac{1+2n}{2n}$<$\frac{2×1}{2×1-1}$×$\frac{2×2}{2×2-1}$×…×$\frac{2n}{2n-1}$=$\frac{2×1}{2×2-1}$×$\frac{2×1}{2×3-1}$×…×$\frac{2(n-1)}{2n-1}$×$\frac{2n}{1+2n}$×(1+2n).
∴Tn<$\frac{1}{{T}_{n}}$×(1+2n),
∴Tn<$\sqrt{2n+1}$.
(III)证明:n=1时,$(\frac{2-1}{2})^{2}$=$\frac{1}{4}$,∴左边=右边,成立.
n≥2时,∵$(\frac{{b}_{n}-1}{{b}_{n}})^{2}$=$(\frac{2n-1}{2n})^{2}$≥$\frac{n-1}{n}$,
∴($\frac{{b}_{1}-1}{{b}_{1}}$)2•($\frac{{b}_{2}-1}{{b}_{2}}$)2•…•($\frac{{b}_{n}-1}{{b}_{n}}$)2≥$\frac{1}{4}$×$\frac{1}{2}$×$\frac{2}{3}$×…×$\frac{n-1}{n}$=$\frac{1}{4n}$.
∴对于任意的正整数n,都有($\frac{{b}_{1}-1}{{b}_{1}}$)2•($\frac{{b}_{2}-1}{{b}_{2}}$)2•…•($\frac{{b}_{n}-1}{{b}_{n}}$)2≥$\frac{1}{4n}$成立.

点评 本题考查了数列递推关系、等比数列的通项公式与求和公式、“错位相减法”、不等式的证明、“放缩法”,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设函数f(x)的导函数为f′(x),且$ef(x)-{f^'}(1){e^x}+ef(0)x-\frac{1}{2}e{x^2}=0$.
(1)求f(x)的解析式;
(2)若方程$f(x)-\frac{1}{2}{x^2}-m=0$在区间[-1,2]上恰有两个不同的实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求与双曲线x2-$\frac{y^2}{4}$=1有共同的渐近线,且过点(2,2)的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.与圆C1:(x+3)2+y2=1,圆C2:(x-3)2+y2=9同时外切的动圆圆心的轨迹方程是(  )
A.$\frac{y^2}{8}$-x2=1B.x2-$\frac{y^2}{8}$=1C.x2-$\frac{y^2}{8}$=1(x≥1)D.x2-$\frac{y^2}{8}$=1(x≤-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=5,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,则向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角的正切值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某城市理论预测2020年到2024年人口总数与年份的关系如表所示
年份x(年)  0  1  2  3  4
人口数y(十万)  5  7  81119
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)据此估计2025年该城市人口总数.
参考公式:用最小二乘法求线性回归方程系数公式$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)求值:sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°);
(2)写出函数f(x)=${({\frac{1}{3}})^{sinx}}$的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若方程$\frac{x^2}{k-4}$+$\frac{y^2}{k+1}$=1表示的曲线是双曲线,则k的取值范围是(-1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=sin(2x-$\frac{π}{6}$),x∈[0,π]的递增区间是$[0,\frac{π}{3}]$,$[\frac{5π}{6},π]$.

查看答案和解析>>

同步练习册答案