精英家教网 > 高中数学 > 题目详情
4.某城市理论预测2020年到2024年人口总数与年份的关系如表所示
年份x(年)  0  1  2  3  4
人口数y(十万)  5  7  81119
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)据此估计2025年该城市人口总数.
参考公式:用最小二乘法求线性回归方程系数公式$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.

分析 (1)以年份为x轴,人口数为y轴,根据表格数据,可得散点图;
(2)利用公式,求出回归系数,即可求线性回归方程即可.
(3)根据(3)的结果,把x=5代入线性回归方程求值即可.

解答 解:(1)散点图如图所示
(2)∵$\overline{x}$=2,$\overline{y}$=10
0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30
∴$\stackrel{∧}{b}$=$\frac{132-5×2×10}{30-5×{2}^{2}}$=3.2,$\stackrel{∧}{a}$=3.6;
∴线性回归方程为$\stackrel{∧}{y}$=3.2 x+3.6      
(3)令x=5,则$\stackrel{∧}{y}$=16+3.6=19.6,故估计2025年该城市人口总数为19.6(十万).

点评 本题考查线性回归知识,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若直线ax+y+1=0过圆x2+y2+2x-ay-2=0的圆心,则实数a的值为(  )
A.-2B.2C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在某次知识竞赛中,参赛选手成绩的茎叶图和频率分布直方图受到损坏,可见部分如图所示.

(1)根据图中信息,将图乙中的频率分布直方图补充完整;
(2)根据频率分布直方图估计竞赛成绩的平均值;
(3)从成绩在[80,100]的选手中任选2人进行综合能力评估,求至少1人成绩在[90,100]的频率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{xn}满足xn-1-xn=d(n∈N*,n≥2,d为常数),且x1+x2+…+x20=200,则x5+x16=(  )
A.10B.20C.30D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}的前n项和为Sn,且Sn=$\frac{{3}^{n}-1}{2}$,记bn=2(1+log3an) (n∈N*).
(Ⅰ)求数列{anbn}的前n项和Tn
(Ⅱ)求证:对于任意的正整数n,都有$\frac{1+{b}_{1}}{{b}_{1}}$•$\frac{1+{b}_{2}}{{b}_{2}}$•…•$\frac{1+{b}_{n}}{{b}_{n}}$<$\sqrt{2n+1}$成立;
(Ⅲ)求证:对于任意的正整数n,都有($\frac{{b}_{1}-1}{{b}_{1}}$)2•($\frac{{b}_{2}-1}{{b}_{2}}$)2•…•($\frac{{b}_{n}-1}{{b}_{n}}$)2≥$\frac{1}{4n}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知△ABC中,角A,B,C的对边分别为a,b,c,且2acosB=ccosB+bcosC
(1)求角B的大小;
(2)设向量$\overrightarrow m$=(cosA,cos2A),$\overrightarrow n$=(12,-5),边长a=4,求当$\overrightarrow m•\overrightarrow n$取最大值时,三角形的面积S△ABC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若两圆的半径分别为3和8,圆心距为13,试求两圆的外公切线的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)为定义在R上的奇函数,当x>0时,f(x)=3•2x-2-x
(1)求函数f(x)在R上的解析式;
(2)若f(mx2+1)+f(3x-2x2)≥0对x∈R恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题p:“?x∈R,2x-1>0”,命题q:“函数f(x)=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$]最小值为2,则下列命题正确的是(  )
A.命题“p∧q”是真命题B.命题“p∧(¬q)”是真命题
C.命题“(¬p)∧q”是真命题D.命题“(¬p)∧(¬q)”是真命题

查看答案和解析>>

同步练习册答案