精英家教网 > 高中数学 > 题目详情
12.已知数列{xn}满足xn-1-xn=d(n∈N*,n≥2,d为常数),且x1+x2+…+x20=200,则x5+x16=(  )
A.10B.20C.30D.40

分析 根据数列{xn}满足xn-xn-1=d,得到此数列为等差数列,由x1+x2+…+x20=80,利用等差数列的前n项和公式表示出前20项的和等于80,根据等差数列的性质可知项数之和相等的两项之和相等,得到10(x5+x16)等于80,即可求出x5+x16的值.

解答 解:根据题意可知数列{xn}为等差数列,
则x1+x2+…+x20=$\frac{20({x}_{1}+{x}_{20})}{2}$=10(x1+x20)=10(x5+x16)=200,
所以x5+x16=20.
故选:B.

点评 此题考查学生掌握数列为等差数列的确定方法,灵活运用等差数列的性质化简求值,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知p:?x∈R,sinx+2cosx=3,q:?x∈R,4x+2x+1+1>0,则下列命题中真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知i1=i,i2=-1,i3=-i,i4=1,i5=i,由此可猜想i2016=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)n的展开式中前三项系数成等差数列.求:
(1)展开式中含x的一次幂的项;
(2)展开式中所有x的有理项;
(3)展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.与圆C1:(x+3)2+y2=1,圆C2:(x-3)2+y2=9同时外切的动圆圆心的轨迹方程是(  )
A.$\frac{y^2}{8}$-x2=1B.x2-$\frac{y^2}{8}$=1C.x2-$\frac{y^2}{8}$=1(x≥1)D.x2-$\frac{y^2}{8}$=1(x≤-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2,且∠A=60°,则△ABC面积的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某城市理论预测2020年到2024年人口总数与年份的关系如表所示
年份x(年)  0  1  2  3  4
人口数y(十万)  5  7  81119
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)据此估计2025年该城市人口总数.
参考公式:用最小二乘法求线性回归方程系数公式$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}1+|lg(x-1)|,x>1\\ g(x),x<1\end{array}$的图象关于点P对称,且函数y=f(x+1)-1为奇函数,则下列结论:
①点P的坐标为(1,1);
②当x∈(-∞,0)时,g(x)≤-1恒成立;
③关于x的方程f(x)=a,a∈R有且只有两个实根,
其中正确结论的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足约束条件$\left\{\begin{array}{l}{2x-y-2≤0}\\{2x+y-4≥0}\\{y≤2}\end{array}\right.$,则$\frac{y}{x+1}$的取值范围是(  )
A.[$\frac{2}{5}$,1]B.[$\frac{2}{3}$,1]C.[$\frac{1}{2}$,$\frac{3}{2}$]D.[$\frac{2}{5}$,$\frac{2}{3}$]

查看答案和解析>>

同步练习册答案