精英家教网 > 高中数学 > 题目详情
2.若实数x,y满足约束条件$\left\{\begin{array}{l}{2x-y-2≤0}\\{2x+y-4≥0}\\{y≤2}\end{array}\right.$,则$\frac{y}{x+1}$的取值范围是(  )
A.[$\frac{2}{5}$,1]B.[$\frac{2}{3}$,1]C.[$\frac{1}{2}$,$\frac{3}{2}$]D.[$\frac{2}{5}$,$\frac{2}{3}$]

分析 首先画出可行域,利用目标函数的几何意义求最值即可.

解答 解:由题意,约束条件对应的区域如图:
则$\frac{y}{x+1}$的几何意义是区域内的点与(-1,0)连接直线的斜率,所以当与A连接时斜率最小,与C连接时斜率最大,由$\left\{\begin{array}{l}{2x-y-2=0}\\{2x+y-4=0}\end{array}\right.$得到A(1.5,1),所以则$\frac{y}{x+1}$的最小值为$\frac{1}{2.5}=\frac{2}{5}$;
由$\left\{\begin{array}{l}{2x+y-4=0}\\{y=2}\end{array}\right.$得到C(1,2),所以最大值为$\frac{2}{1+1}=1$,
所以则$\frac{y}{x+1}$的取值范围是[$\frac{2}{5}$,1];
故选:A.

点评 本题考查了线性规划问题,利用数形结合的思想方法,画出可行域,利用目标函数的几何意义求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知数列{xn}满足xn-1-xn=d(n∈N*,n≥2,d为常数),且x1+x2+…+x20=200,则x5+x16=(  )
A.10B.20C.30D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)为定义在R上的奇函数,当x>0时,f(x)=3•2x-2-x
(1)求函数f(x)在R上的解析式;
(2)若f(mx2+1)+f(3x-2x2)≥0对x∈R恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知A(x1,y1).B(x2,y2),P是直线上一点,$\frac{AP}{PB}$=2,则P点坐标为($\frac{{x}_{1}+{2x}_{2}}{3}$,$\frac{{y}_{1}+{2y}_{2}}{3}$)或(2x2-x1,2y2-y1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若集合B={x|x≥0},且A∩B=A,则集合A可能是(  )
A.{1,2}B.{x|x≤1}C.{-1,0,1}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,若cos2B+3cos(A+C)+2=0,则sinB的值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题p:“?x∈R,2x-1>0”,命题q:“函数f(x)=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$]最小值为2,则下列命题正确的是(  )
A.命题“p∧q”是真命题B.命题“p∧(¬q)”是真命题
C.命题“(¬p)∧q”是真命题D.命题“(¬p)∧(¬q)”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)的导函数为f′(x)=ax(x+2)(x-a)(a<0),若函数f(x)在x=-2处取到极小值,则实数a的取值范围是a<-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,若输入a=1,b=2,则输出的x=(  )
A.1.25B.1.375C.1.40625D.1.4375

查看答案和解析>>

同步练习册答案