精英家教网 > 高中数学 > 题目详情
10.已知A(x1,y1).B(x2,y2),P是直线上一点,$\frac{AP}{PB}$=2,则P点坐标为($\frac{{x}_{1}+{2x}_{2}}{3}$,$\frac{{y}_{1}+{2y}_{2}}{3}$)或(2x2-x1,2y2-y1).

分析 设出点P的坐标,表示出向量$\overrightarrow{AP}$和$\overrightarrow{PB}$,利用P是直线AB上一点,$\frac{AP}{PB}$=2,
得出$\overrightarrow{AP}$=2$\overrightarrow{PB}$,或$\overrightarrow{AP}$=-2$\overrightarrow{BP}$;由此列出方程组求出点P的坐标.

解答 解:设点P(x,y),则$\overrightarrow{AP}$=(x-x1,y-y1),$\overrightarrow{PB}$=(x2-x,y2-y);
由P是直线AB上一点,且$\frac{AP}{PB}$=2,
所以$\overrightarrow{AP}$=2$\overrightarrow{PB}$,或$\overrightarrow{AP}$=-2$\overrightarrow{BP}$,如图所示;

当$\overrightarrow{AP}$=2$\overrightarrow{PB}$时,$\left\{\begin{array}{l}{x{-x}_{1}=2{(x}_{2}-x)}\\{y{-y}_{1}=2{(y}_{2}-y)}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=\frac{{x}_{1}+{2x}_{2}}{3}}\\{y=\frac{{y}_{1}+{2y}_{2}}{3}}\end{array}\right.$,所以P($\frac{{x}_{1}+{2x}_{2}}{3}$,$\frac{{y}_{1}+{2y}_{2}}{3}$);
当$\overrightarrow{AP}$=-2$\overrightarrow{BP}$时,$\left\{\begin{array}{l}{x{-x}_{1}=-2{(x}_{2}-x)}\\{y{-y}_{1}=-2{(y}_{2}-y)}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x={2x}_{2}{-x}_{1}}\\{y={2y}_{2}{-y}_{1}}\end{array}\right.$,所以P(2x2-x1,2y2-y1);
综上,P点坐标为($\frac{{x}_{1}+{2x}_{2}}{3}$,$\frac{{y}_{1}+{2y}_{2}}{3}$)或(2x2-x1,2y2-y1).
故答案为:($\frac{{x}_{1}+{2x}_{2}}{3}$,$\frac{{y}_{1}+{2y}_{2}}{3}$)或(2x2-x1,2y2-y1).

点评 本题考查了平面向量的坐标运算与方程组的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.若($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)n的展开式中前三项系数成等差数列.求:
(1)展开式中含x的一次幂的项;
(2)展开式中所有x的有理项;
(3)展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}1+|lg(x-1)|,x>1\\ g(x),x<1\end{array}$的图象关于点P对称,且函数y=f(x+1)-1为奇函数,则下列结论:
①点P的坐标为(1,1);
②当x∈(-∞,0)时,g(x)≤-1恒成立;
③关于x的方程f(x)=a,a∈R有且只有两个实根,
其中正确结论的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若π<α<$\frac{3π}{2}$,sin($\frac{3π}{2}$-α)+cos(2π-α)$\sqrt{\frac{1+sinα}{1-sinα}}$+1=$\frac{7}{5}$,则sinα-cosα=(  )
A.$\frac{1}{5}$B.±$\frac{1}{5}$C.$\frac{7}{5}$D.±$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在(1+x)(x2+$\frac{1}{x}$)6的展开式中,x3的系数是20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某四棱柱的三视图如图所示,则在四个侧面中,直角三角形的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足约束条件$\left\{\begin{array}{l}{2x-y-2≤0}\\{2x+y-4≥0}\\{y≤2}\end{array}\right.$,则$\frac{y}{x+1}$的取值范围是(  )
A.[$\frac{2}{5}$,1]B.[$\frac{2}{3}$,1]C.[$\frac{1}{2}$,$\frac{3}{2}$]D.[$\frac{2}{5}$,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=$\sqrt{2sinx-\sqrt{3}}$的定义域是[$\frac{π}{3}+2kπ,\frac{2π}{3}+2kπ$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.曲线y=-x3+2x+1在点(0,1)处的切线方程为y=2x+1 .

查看答案和解析>>

同步练习册答案