精英家教网 > 高中数学 > 题目详情

【题目】如图,点P是边长为1的正六边形ABCDEF的边上的一个动点,设 =x +y ,则x+y的最大值为

【答案】2
【解析】解:六边形边长为1,把向量 和向量 ,沿着AD方向和垂直于AD两个方向分解. 设AD方向为x轴,垂直于AD方向为y轴如图:
那么 = =(﹣ ),
=(﹣ ,﹣1﹣ ),
=(﹣ x﹣ y, x﹣(1+ )y),
所以,当 的横坐标最小的时候,x+y最大.
那么,当P与D重合时,满足这一条件.
此时AP=2,x+y=2;最大值为2;
故答案为:2.

设六边形边长为1,把向量 ,和向量 ,沿着AD方向和垂直于AD两个方向分解.设AD方向为x轴,垂直于AD方向为y轴距离坐标系,得到 的坐标,分析x+y取最大值时P的位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,随机抽取了6个试销售数据,得到第i个销售单价xi(单位:元)与销售yi(单位:件)的数据资料,算得
(1)求回归直线方程
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入﹣成本) 附:回归直线方程 中, = = ,其中 是样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 通项公式为
(1)计算f(1),f(2),f(3)的值;
(2)比较f(n)与1的大小,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 (a>b>0)的离心率为 ,且过点(1, ).
(1)求C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有100名工人接受了生产1000台某产品的总任务,每台产品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲型装置或3个乙型装置.现将工人分成两组分别加工甲型和乙型装置.设加工甲型装置的工人有x人,他们加工完甲型装置所需时间为t1小时,其余工人加工完乙型装置所需时间为t2小时.

f(x)=t1t2

(Ⅰ)求f(x)的解析式,并写出其定义域;

(Ⅱ)当x等于多少时,f(x)取得最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于命题:若O是线段AB上一点,则有| | +| | = .将它类比到平面的情形是:若O是△ABC内一点,则有SOBC +SOCA +SOBA = ,将它类比到空间情形应该是:若O是四面体ABCD内一点,则有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABCA1B1C1中,ABACEBC的中点,求证:

(Ⅰ)平面AB1E⊥平面B1BCC1

(Ⅱ)A1C//平面AB1E

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)对任意的x∈(﹣ )满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是(
A. f(﹣ )<f(﹣
B. f( )<f( )??
C.f(0)>2f(
D.f(0)> f(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的左、右焦点为F1、F2 , 离心率为e.直线l:y=ex+a与x轴、y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设
(1)证明:λ=1﹣e2
(2)若λ= ,△MF1F2的周长为6;写出椭圆C的方程;
(3)确定λ的值,使得△PF1F2是等腰三角形.

查看答案和解析>>

同步练习册答案