精英家教网 > 高中数学 > 题目详情

【题目】已知函数y=f(x)对任意的x∈(﹣ )满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是(
A. f(﹣ )<f(﹣
B. f( )<f( )??
C.f(0)>2f(
D.f(0)> f(

【答案】A
【解析】解:构造函数g(x)=
则g′(x)= = (f′(x)cosx+f(x)sinx),
∵对任意的x∈(﹣ )满足f′(x)cosx+f(x)sinx>0,
∴g′(x)>0,即函数g(x)在x∈(﹣ )单调递增,
则g(﹣ )<g(﹣ ),即
,即 f(﹣ )<f(﹣ ),故A正确.
g(0)<g( ),即
∴f(0)<2f( ),
故选:A.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某农户准备建一个水平放置的直四棱柱形储水器(如图),其中直四棱柱的高两底面是高为面积为的等腰梯形,且,若储水窖顶盖每平方米的造价为100元,侧面每平方米的造价为400元,底部每平方米的造价为500

(1)试将储水窖的造价表示为的函数;

(2)该农户如何设计储水窖,才能使得储水窖的造价最低,最低造价是多少元?(取).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点P是边长为1的正六边形ABCDEF的边上的一个动点,设 =x +y ,则x+y的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.

(1)证明:BE⊥DC;
(2)求直线BE与平面PBD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC﹣A1B1C1中,CA=CB,M,N,P分别为AB,A1C1 , BC的中点.
求证:
(1)C1P∥平面MNC;
(2)平面MNC⊥平面ABB1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,下列说法错误的是

A. 的最小值点

B. 函数有且只有1个零点

C. 存在正实数,使得恒成立

D. 对任意两个不相等的正实数,若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数y=f(x)的图象过坐标原点,其导函数f′(x)=6x﹣2,数列{an}前n项和为Sn , 点(n,Sn)(n∈N*)均在y=f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设 ,Tn是数列{bn}的前n项和,求当 对所有n∈N*都成立m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若曲线在公共点处有相同的切线,求实数的值;

2)当时,若曲线在公共点处有相同的切线,求证:点唯一;

3)若 ,且曲线总存在公切线,求:正实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设事件A表示“关于x的一元二次方程x2+ax+b2=0有实根”,其中a,b为实常数. (Ⅰ)若a为区间[0,5]上的整数值随机数,b为区间[0,2]上的整数值随机数,求事件A发生的概率;
(Ⅱ)若a为区间[0,5]上的均匀随机数,b为区间[0,2]上的均匀随机数,求事件A发生的概率.

查看答案和解析>>

同步练习册答案