已知函数,.
(1)若的极大值为,求实数的值;
(2)若对任意,都有恒成立,求实数的取值范围;
(3)若函数f(x)满足:在定义域内存在实数x0,使f(x0+k)= f(x0)+ f(k)(k为常数),则称“f(x)关于k可线性分解”. 设,若关于实数a 可线性分解,求取值范围.
(1);(2);(3).
解析试题分析:本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用导数求出极值,令极值为,解方程得b的值,先对求导,利用“为递增函数,为递减函数”判断函数单调性,利用单调性判断极大值为;第二问,将“对任意,都有恒成立”转化为“”,令,利用导数求的最小值;第三问,先利用已知得到的解析式,代入到已知的f(x0+k)= f(x0)+ f(k)中,得到方程,根据函数定义域,得.
科目:高中数学
来源:
题型:解答题
已知函数.
科目:高中数学
来源:
题型:解答题
已知函数(其中),为f(x)的导函数.
科目:高中数学
来源:
题型:解答题
(2013•重庆)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
科目:高中数学
来源:
题型:解答题
已知函数的图象过坐标原点O,且在点处的切线的斜率是.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
(1)由,得,
令,得或. 2分
当变化时,及的变化如下表:- + - ↘ 极小值 ↗ 极大值 ↘
<
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.
(1)求证:曲线y=在点(1,)处的切线不过点(2,0);
(2)若在区间中存在,使得,求的取值范围;
(3)若,试证明:对任意,恒成立.
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.
(1)求实数的值;
(2)求在区间上的最大值;
(3)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号