精英家教网 > 高中数学 > 题目详情

已知函数
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

(1);(2);(3).

解析试题分析:本题主要考查导数的运算、利用导数求曲线的切线、利用导数判断函数的单调性、利用导数求函数的最值、恒成立问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力,考查学生的分类讨论思想、函数思想.第一问,对求导,将切点的横坐标代入得到切线的斜率,再将切点的横坐标代入到中,得到切点的纵坐标,利用点斜式得到切线的方程;第二问,在定义域内是增函数,只需恒成立,对求导,由于分母恒正,只需分子恒成立,设函数,利用抛物线的性质求出,令即可,解出P的值;第三问,先通过函数的单调性求出的值域,通过对P的讨论研究的单调性,求出的值域,看是否有值大于的最小值为2.
(1)当时,函数
,曲线在点处的切线的斜率为
从而曲线在点处的切线方程为,即.…4分
(2)
,要使在定义域内是增函数,只需内恒成立.
由题意的图象为开口向上的抛物线,对称轴方程为,∴,     只需,即时,
内为增函数,正实数的取值范围是.……9分
(3)∵上是减函数,
时,时,,即
①当时,,其图象为开口向下的抛物线,对称轴轴的左侧,且,所以内是减函数.
时,,因为,所以
此时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数,曲线处的切线斜率为0
求b;若存在使得,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=ex-t(x+1).
(1)若f(x)≥0对一切正实数x恒成立,求t的取值范围;
(2)设,且A(x1,y1)、B(x2,y2)(x1≠x2)是曲线y=g(x)上任意两点,若对任意的t≤-1,直线AB的斜率恒大于常数m,求m的取值范围;
(3)求证:(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=xlnx-x2.
(1)当a=1时,函数y=f(x)有几个极值点?
(2)是否存在实数a,使函数f(x)=xlnx-x2有两个极值?若存在,求实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(是常数)在处的切线方程为,且.
(1)求常数的值;
(2)若函数()在区间内不是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数单调区间;
(2)若函数在区间[1,2]上的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln x,g(x)=x2-bx(b为常数).
(1)函数f(x)的图像在点(1,f(1))处的切线与g(x)的图像相切,求实数b的值;
(2)设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b的取值范围;
(3)若b>1,对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若的极大值为,求实数的值;
(2)若对任意,都有恒成立,求实数的取值范围;
(3)若函数f(x)满足:在定义域内存在实数x0,使f(x0+k)= f(x0)+ f(k)(k为常数),则称“f(x)关于k可线性分解”. 设,若关于实数a 可线性分解,求取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=ln x-ax,g(x)=ex-ax,其中a为实数.若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围.

查看答案和解析>>

同步练习册答案