已知函数(是常数)在处的切线方程为,且.
(1)求常数的值;
(2)若函数()在区间内不是单调函数,求实数的取值范围.
(1),,(2)
解析试题分析:(1)在处的切线切线斜率为,由导数的几何意义可知,将代入切线方程可得即又因为,解以上三个方程组成的方程组可得的值。(2)由(1)可知函数的解析式,从而可得函数解析式。将其求导可得,令,可将问题转化为函数在内有极值,即应有2个根(判别式应大于0),但在内至少有一个根(故应分两种情况讨论)。因为,所以在内有一个根时应有,在内有两个根时应因为,则且顶点纵坐标小于0
(1)由题设知,的定义域为,,
因为在处的切线方程为,
所以,且,即,且,
又 ,解得,,
(2)由(Ⅰ)知
因此,
所以
令.
(ⅰ)当函数在内有一个极值时,在内有且仅有一个根,即在内有且仅有一个根,又因为,当,即时,在内有且仅有一个根,当时,应有,即,解得,所以有.
(ⅱ)当函数在内有两个极值时,在内有两个根,即二次函数在内有两个不等根,
所以,解得.
综上,实数的取值范围是
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知函数(为常数)的图像与轴交于点,曲线在点处的切线斜率为.
(1)求的值及函数的极值;
(2)证明:当时,
(3)证明:对任意给定的正数,总存在,使得当时,恒有
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
(1)当a=1时,求曲线在点(1,f(1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的值;
(3)若对任意,且恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数(其中),为f(x)的导函数.
(1)求证:曲线y=在点(1,)处的切线不过点(2,0);
(2)若在区间中存在,使得,求的取值范围;
(3)若,试证明:对任意,恒成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com