精英家教网 > 高中数学 > 题目详情

已知函数(其中),为f(x)的导函数.
(1)求证:曲线y=在点(1,)处的切线不过点(2,0);
(2)若在区间中存在,使得,求的取值范围;
(3)若,试证明:对任意恒成立.

(1)参考解析;(2); (3)参考解析

解析试题分析:(1)由函数(其中),求出,由于求y=在点(1,)处的切线方程,由点斜式可得结论.
(2)由,再利用分离变量即可得到.在再研究函数的单调性即可得到结论.
(3)由可得.需证任意恒成立,等价证明.然后研究函数,通过求导求出函数的最大值.研究函数,通过求导得出函数的.再根据不等式的传递性可得结论.
(1)由
所以曲线y=在点(1,)处的切线斜率为
曲线y=切线方程为
假设切线过点(2,0),代入上式得:,得到0=1产生矛盾,所以假设错误,
故曲线y=在点(1,)处的切线不过点(2,0)   4分
(2)由
,所以在(0,1]上单调递减,故    7分
(3)令,当=1时,,所以..
因此,对任意等价于.    9分
.所以.
因此,当时,单调递增;时,单调递减.
所以的最大值为,故.            12分
,所以单调递增,
时,,即.
所以.
因此,对任意

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数(是常数)在处的切线方程为,且.
(1)求常数的值;
(2)若函数()在区间内不是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为小于的常数).
(1)当时,求函数的单调区间;
(2)存在使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数函数处取得极值1.
(1)求实数b,c的值;
(2)求在区间[-2,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数
(1)若曲线与曲线在它们的交点处的切线互相垂直,求的值;
(2)设,若对任意的,且,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若的极大值为,求实数的值;
(2)若对任意,都有恒成立,求实数的取值范围;
(3)若函数f(x)满足:在定义域内存在实数x0,使f(x0+k)= f(x0)+ f(k)(k为常数),则称“f(x)关于k可线性分解”. 设,若关于实数a 可线性分解,求取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,证明:当时,
(2)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数上是减函数,求实数的取值范围;
(2)是否存在实数,当是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;
(3)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•天津)已知函数f(x)=x2lnx.
(1)求函数f(x)的单调区间;
(2)证明:对任意的t>0,存在唯一的s,使t=f(s).
(3)设(2)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有

查看答案和解析>>

同步练习册答案