(2013•天津)已知函数f(x)=x2lnx.
(1)求函数f(x)的单调区间;
(2)证明:对任意的t>0,存在唯一的s,使t=f(s).
(3)设(2)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有.
科目:高中数学 来源: 题型:解答题
已知函数(其中),为f(x)的导函数.
(1)求证:曲线y=在点(1,)处的切线不过点(2,0);
(2)若在区间中存在,使得,求的取值范围;
(3)若,试证明:对任意,恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数为自然对数的底数).
(1)求曲线在处的切线方程;
(2)若是的一个极值点,且点,满足条件:.
(ⅰ)求的值;
(ⅱ)求证:点,,是三个不同的点,且构成直角三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x3-3ax2+3x+1.
(1)设a=2,求f(x)的单调区间;
(2)设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com