精英家教网 > 高中数学 > 题目详情

(2013•天津)已知函数f(x)=x2lnx.
(1)求函数f(x)的单调区间;
(2)证明:对任意的t>0,存在唯一的s,使t=f(s).
(3)设(2)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有

(1)所以函数f(x)的单调递减区间为(0,),单调递增区间为( ,+∞)
(2)见解析    (3)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数(其中),为f(x)的导函数.
(1)求证:曲线y=在点(1,)处的切线不过点(2,0);
(2)若在区间中存在,使得,求的取值范围;
(3)若,试证明:对任意恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)证明函数上是增函数;
(2)用反证法证明方程没有负数根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底数).
(1)求曲线处的切线方程;
(2)若的一个极值点,且点满足条件:.
(ⅰ)求的值;
(ⅱ)求证:点是三个不同的点,且构成直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3-3ax2+3x+1.
(1)设a=2,求f(x)的单调区间;
(2)设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数上是增函数,求实数的取值范围;
(2)若函数上的最小值为3,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3-3x2+2x
(1)在处的切线平行于直线,求点的坐标;
(2)求过原点的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其导函数的图象经过点,如图所示.
(1)求的极大值点;
(2)求的值;
(3)若,求在区间上的最小值.

查看答案和解析>>

同步练习册答案