已知函数f(x)=x3-3x2+2x
(1)在处的切线平行于直线,求点的坐标;
(2)求过原点的切线方程.
(1)(2)y=-x.
解析试题分析:(1)先求出函数的导函数,再求出函数在(2,-6)处的导数即斜率,易求切线方程.
(2)设切点为(x0,y0),则直线l的斜率为f'(x0)=3x02+1,从而求得直线l的方程,有条件直线1过原点可求解切点坐标,进而可得直线1的方程..
解:f′(x)=3x2-6x+2.
(1)设,则,解得.则
(2) ⅰ)当切点是原点时k=f′(0)=2,
所以所求曲线的切线方程为y=2x.
ⅱ)当切点不是原点时,设切点是(x0,y0),
则有y0=-3+2x0,k=f′(x0)=3-6x0+2,①
又k==-3x0+2,②
由①②得x0=,k==-.
∴所求曲线的切线方程为y=-x.
考点:直线的点斜式方程.
科目:高中数学 来源: 题型:解答题
已知函数,
(1)若函数在上是减函数,求实数的取值范围;
(2)是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;
(3)当时,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2013•天津)已知函数f(x)=x2lnx.
(1)求函数f(x)的单调区间;
(2)证明:对任意的t>0,存在唯一的s,使t=f(s).
(3)设(2)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数()
(1)当a=2时,求在区间[e,e2]上的最大值和最小值;
(2)如果函数、、在公共定义域D上,满足<<,那么就称为、的“伴随函数”.已知函数,,若在区间(1,+∞)上,函数是、的“伴随函数”,求a的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆
弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)
(1)设(弧度),将绿化带总长度表示为的函数;
(2)试确定的值,使得绿化带总长度最大.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com