某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆
弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)
(1)设(弧度),将绿化带总长度表示为的函数;
(2)试确定的值,使得绿化带总长度最大.
(1),,(2)当时,绿化带总长度最大.
解析试题分析:(1)解实际问题应用题,关键正确理解题意,正确列出等量关系或函数关系式.本题要注意着重号. 绿化带总长度等于2AC与弧长BC之和. 在直角三角形中,,,所以.由于,所以弧的长为.所以,作为函数解析式,必须明确其定义域,.(2)利用导数求最大值. 令,则,列表分析可知当时,取极大值,即为最大值.
科目:高中数学
来源:
题型:解答题
已知函数为自然对数的底数).
科目:高中数学
来源:
题型:解答题
已知函数
科目:高中数学
来源:
题型:解答题
已知函数.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
【解】(1)如图,连接,设圆心为,连接.
在直角三角形中,,,
所以.
由于,所以弧的长为. 3分
所以,
即,. 7分
(2), 9分
令,则, 11分
列表如下:+ 0
(1)求曲线在处的切线方程;
(2)若是的一个极值点,且点,满足条件:.
(ⅰ)求的值;
(ⅱ)求证:点,,是三个不同的点,且构成直角三角形.
(1)若函数的图象切x轴于点(2,0),求a、b的值;
(2)设函数的图象上任意一点的切线斜率为k,试求的充要条件;
(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证.
(1)当时,求函数的单调增区间;
(2)当时,求函数在区间上的最小值;
(3)记函数图象为曲线,设点,是曲线上不同的两点,点为线段的中点,过点作轴的垂线交曲线于点.试问:曲线在点处的切线是否平行于直线?并说明理由.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号