已知函数,其导函数的图象经过点,,如图所示.
(1)求的极大值点;
(2)求的值;
(3)若,求在区间上的最小值.
(1);(2);(3)当时,;当时,;当时,.
解析试题分析:(1)由导函数图象可知:在区间单调递增,在区间单调递减,所以,的极大值点为 ;(2)对原函数进行求导,.令,解得
,而时,与已知矛盾,.(3)由(1)知,在区间单调递增,在区间单调递减,则给定的要按,,进行讨论.
试题解析:(1)由导函数图象可知:在区间单调递增,在区间单调递减,
所以,的极大值点为 3分
(2) 2分
由得 3分
当时,与已知矛盾, 5分
(3)
①当,即时,在区间上单调递减
2分
②当,即时,在区间上单调递减,在区间
上单调递增, 4分
③当时,在区间上单调递增,
6分
考点:1.利用导数求极值点;2.在给定区间上的最值求解.
科目:高中数学 来源: 题型:解答题
(2013•天津)已知函数f(x)=x2lnx.
(1)求函数f(x)的单调区间;
(2)证明:对任意的t>0,存在唯一的s,使t=f(s).
(3)设(2)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆
弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)
(1)设(弧度),将绿化带总长度表示为的函数;
(2)试确定的值,使得绿化带总长度最大.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,,其中,为自然对数的底数.
(1)若在处的切线与直线垂直,求的值;
(2)求在上的最小值;
(3)试探究能否存在区间,使得和在区间上具有相同的单调性?若能存在,说明区间的特点,并指出和在区间上的单调性;若不能存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数,.
(1)若函数在上单调递增,求实数的取值范围;
(2)求函数的极值点.
(3)设为函数的极小值点,的图象与轴交于两点,且,中点为,
求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com