精英家教网 > 高中数学 > 题目详情

设函数.
(1)若函数上单调递增,求实数的取值范围;
(2)求函数的极值点.
(3)设为函数的极小值点,的图象与轴交于两点,且中点为
求证:

(1);(2)详见解析;(3)详见解析.

解析试题分析:(1)先求,在恒成立,反解参数,转化成恒成立问题,利用基本不等式求的最小值问题;
(2)先求函数的导数,因为,所以设,分情况讨论在不同情况下,的根,通过来讨论,主要分以及的情况,求出导数为0的值,判断两侧的单调性是否改变,从而确定极值点;
(3),两式相减,结合中点坐标公式,,表示出,设出的能表示正负的部分函数,再求导数,利用导数得出单调性,从而确定.
试题解析:(1)
依题意得,在区间上不等式恒成立.
又因为,所以.所以
所以实数的取值范围是.                2分
(2),令
①显然,当时,在恒成立,这时,此时,函数没有极值点;          ..3分
②当时,
(ⅰ)当,即时,在恒成立,这时,此时,函数没有极值点;          .4分
(ⅱ)当,即时,
易知,当时,,这时
时,,这时
所以,当时,是函数的极大值点;是函数的极小值点.
综上,当时,函数没有极值点;                    .6分
时,是函数的极大值点;是函数的极小值点.      8分
(Ⅲ)由已知得两式相减,
得:       ①
,得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其导函数的图象经过点,如图所示.
(1)求的极大值点;
(2)求的值;
(3)若,求在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若存在过点的直线与曲线都相切,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,(其中常数
(1)当时,求曲线在处的切线方程;
(2)若存在实数使得不等式成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
⑴求函数处的切线方程;
⑵当时,求证:
⑶若,且对任意恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中ma均为实数.
(1)求的极值;
(2)设,若对任意的恒成立,求的最小值;
(3)设,若对任意给定的,在区间上总存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中为常数).
(1)如果函数有相同的极值点,求的值;
(2)设,问是否存在,使得,若存在,请求出实数的取值范围;若不存在,请说明理由.
(3)记函数,若函数有5个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且是函数的一个极小值点.
(1)求实数的值;
(2)求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数.
(1)求函数的零点;
(2)若对任意均有两个极值点,一个在区间(1,4)内,另一个在区间[1,4]外,求a的取值范围;
(3)已知,且函数在R上是单调函数,探究函数的单调性.

查看答案和解析>>

同步练习册答案