精英家教网 > 高中数学 > 题目详情

已知函数,且是函数的一个极小值点.
(1)求实数的值;
(2)求在区间上的最大值和最小值.

(1);(2)当时,有最小值;当时,有最大值.

解析试题分析:(1)先求函数的导函数,因为是函数的一个极小值点,所以,即可求得的值.(2)由(1)知,,求导,在令导数等于0,讨论导数的正负可得函数的单调区间,根据函数的单调区间可求其最值.
试题解析:(1).                                        2分
是函数的一个极小值点,
.
,解得.                                          4分
经检验,当时,是函数的一个极小值点.
 实数的值为                                                5分
(2)由(1)知,.
.
,得.                                     7分
上变化时,的变化情况如下:










 



练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数的定义域是,其中常数.(注:
(1)若,求的过原点的切线方程.
(2)证明当时,对,恒有.
(3)当时,求最大实数,使不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若函数上单调递增,求实数的取值范围;
(2)求函数的极值点.
(3)设为函数的极小值点,的图象与轴交于两点,且中点为
求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线.
(1)若曲线C在点处的切线为,求实数的值;
(2)对任意实数,曲线总在直线:的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上是减函数,在上是增函数,函数上有三个零点,且是其中一个零点.
(1)求的值;
(2)求的取值范围;
(3)设,且的解集为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且是函数的一个极小值点.
(1)求实数的值;
(2)求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若关于x的不等式有实数解,求实数m的取值范围;
(2)设,若关于x的方程至少有一个解,求p的最小值.
(3)证明不等式:    

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数
⑴当时,求函数的表达式;
⑵若,函数上的最小值是2 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求函数的最大值;
(2)设,且,证明:.

查看答案和解析>>

同步练习册答案